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SUMMARY IN ENGLISH  

 

Wild cats are facing a population decline, making it challenging to obtain germ cells for assisted 

reproduction techniques (ART). However, domestic cats can serve as a biomedical model for the 

ART of endangered species due to their biological similarities with other felids. While 

advancements have been made, success rates for ART in cats are lower than in vivo 

development. Stem cells have been used to improve germ cell development in vitro, and contact 

with MSCs can help obtain in vitro-derived embryos with levels of development similar to those 

derived in vivo.  

Due to the above, the proposed research project aimed to isolate and characterise mesenchymal 

stem cells (MSCs) from the different anatomical regions of the feline umbilical cord and 

determine whether the in vitro co-culture of cat oocytes/embryos with feline Wharton's jelly-

derived mesenchymal stem cells (fWJ- MSCs) will improve the results of the feline embryo in 

vitro culture.  

During the initial research phase, the MSCs were derived and cultured from different segments 

of the feline umbilical cord, vessels, Wharton's jelly, and the whole cord. We evaluated the 

proliferative capacity of the MSCs by measuring the cumulative population doubling level and 

doubling time. Additionally, we validated the differentiation potential via chondrogenic, 

osteogenic, and adipogenic induction under each differentiation condition. The expression of 

surface markers was examined with flow cytometry, and the pluripotency gene expression was 

assessed using RT-PCR. 

In the second research phase, feline Wharton's jelly-derived MSCs were used as a feeder layer 

for the oocytes during in vitro maturation and embryos during in vitro culture. In oocytes, the 

degree of cumulus expansion and the nuclear maturation were assessed, whereas for embryos, 

the developmental competence, measured as the cleavage, morula and blastocyst rate, was 

compared to the groups cultured without Wharton's jelly-derived MSCs addition. 

The cells isolated possessed MSCs characteristics, including a typical spindle shape, 

proliferation capacity and the ability to differentiate into various lineages (chondrogenic, 

osteogenic, and adipogenic). These cells express mesenchymal (CD44+, CD90+) and 

pluripotency markers (NANOG, Oct4, SOX2) but not hematopoietic (CD34, MCH I) markers. 
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The Wharton's jelly-derived MSCs displayed the highest proliferation ability and tremendous 

differentiation potential compared to those isolated from the whole umbilical cord and from the 

umbilical cord vessels. 

The use of feline Wharton's jelly-derived MSCs in co-culture with oocytes resulted in an 

increased proportion of cumulus cells and oocytes exhibiting cumulus expansion. Although there 

were no significant differences in the percentage of matured oocytes (metaphase II) among the 

groups, embryo development showed a significant improvement. Oocytes matured with MSC co-

culture conditions had higher cleavage, morula, and blastocyst rates compared to commercial 

media alone (P < 0.05). Similarly, in the second part of the co-culture experiment, the embryos 

co-cultured with MSCs displayed higher morula and blastocyst rates (P < 0.05). 

Based on the results obtained from our study, it has been found that the feline umbilical cord is a 

highly suitable source of MSCs. In addition, it was observed that co-culturing MSCs during 

oocyte maturation led to improved embryo development, while the co-culturing of MSCs during 

embryo culture resulted in a higher number of morula and blastocysts. 

It is important to note that further research is needed to gain a complete understanding of how to 

best utilise MSCs for improving oocyte maturation and embryo in vitro conditions in domestic 

and wild feline species. 
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SUMMARY IN POLISH 

Liczebność gatunków dzikich kotowatych zmniejsza się gwałtownie, co utrudnia pozyskiwanie 

ich komórek rozrodczych do badan mających na celu poprawę wyników obecnie stosowanych 

technik wspomaganego rozrodu prowadzonych w celu ochrony zasobów genetycznych 

zagrożonych gatunków. Z drugiej strony, stale rosnąca populacja kotów domowych, może 

służyć, jako model biomedyczny dla rozwoju i optymizacji biotechnik stosowanych u dzikich 

kotów. Pomimo badań prowadzonych już od wielu lat, wskaźniki sukcesu biotechnik u 

kotowatych są nadal znacząco niższe w porównaniu do wyników uzyskiwanych in vivo. 

Dane literaturowe wskazują, że dodatek komórek macierzystych podczas hodowli gamet in vitro 

sprzyja pozyskiwaniu zarodków, których dynamika rozwoju i jakość są zbliżone do wyników 

obserwowanych in vivo. W związku z powyższym, celem przedstawionego projektu badawczego 

było wyizolowanie i scharakteryzowanie macierzystych komórek mezenchymalnych (MSC), 

pochodzących z różnych regionów anatomicznych sznura pępowinowego kota domowego. A 

następnie sprawdzenie czy dodatek MSCs pochodzących z części sznura pępowinowego zwanej 

galaretą Whartona (fWJ-MSC) podczas dojrzewania oocytów i hodowli zarodków, wpłynie 

korzystnie na proces dojrzewania i potencjał rozwojowy zarodków kota in vitro. 

Niezróżnicowane MSCs pozyskiwano z różnych odcinków pępowiny kota: naczyń, galarety 

Whartona i całej pępowiny podczas początkowej fazy badawczej. W kolejnym etapie oceniano 

zdolność proliferacyjną pozyskanych MSCs w oparciu o czas podwojenia populacji. Dodatkowo 

weryfikowano potencjał pozyskanych komórek do wielokierunkowego różnicowania, poprzez 

indukowanie ich hodowli w kierunku chondrocytów, osteocytów i adipocytów. Ekspresję 

markerów powierzchniowych badano za pomocą cytometrii przepływowej, a ekspresję genu 

pluripotencji oceniano za pomocą RT-PCR. 

W drugim etapie badań, mezenchymalne komórki macierzyste pochodzące z galarety Whartona 

sznura pępowinowego kota domowego, były dodawane do pożywek hodowlanych 

przeznaczonych dla oocytów podczas ich dojrzewania in vitro oraz dla zarodków podczas ich 

hodowli in vitro. W przypadku oocytów oceniano stopień rozszerzenia komórek wieńca 

promienistego i dojrzałość jądrową (metafaza II). Natomiast u zarodków oceniano kompetencję 
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rozwojową, mierzoną, jako wskaźnik bruzdkowania oraz odsetek morul i blastocyst. Uzyskane 

wyniki porównywano z grupami hodowanymi bez dodatku mezenchymalnych komórek 

macierzystych. 

Uzyskane wyniki wskazują, że komórki mezenchymalne izolowane ze sznura pępowinowego, 

posiadały cechy komórek macierzystych, w tym typowy kształt, zdolność proliferacji i zdolność 

różnicowania się w różne linie komórkowe (chondrogenna, osteogenna i adipogenna). Komórki 

te posiadały również typowe markery mezenchymalne (CD 44+, CD90+) i markery pluripotencji 

(NANOG, Oct4, SOX2), ale nie posiadały typowych markerów hematopoetycznych (CD34, 

MCH I). W naszych badaniach, największą liczbę MSCs izolowano z galarety Whartona, 

ponadto te komórki wykazywały najwyższą zdolność proliferacyjną i najlepszy potencjał do 

wielokierunkowego różnicowania, w porównaniu z komórkami izolowanymi z całej pępowiny i 

naczyń pępowinowych. 

W drugim etapie badań, MSCs pochodzące z galarety Whartona były dodawane do hodowli in 

vitro oocytów/zarodków kota domowego. W przypadku oocytów ich dodatek znacząco 

zwiększał stopień rozszerzenia komórek wieńca promienistego, ale nie wpływał na dojrzałość 

jądrową (metafaza II). Dodatkow zarodki pochodzące z oocytów dojrzewających z dodatkiem 

MSCs, wykazywały wyższy odsetek podziałów, morul i blastocyst (P < 0,05). Natomiast 

zarodki, pochodzące z oocytów dojrzewających in vitro w pożywce bez dodatku MSCs, a 

otrzymujące dodatek MSCs podczas rozwoju zarodkowego in vitro, również wykazywały 

wyższy odsetek morul i blastocyst (P < 0,05). 

Na podstawie uzyskanych wyników stwierdzono, że pępowina kota domowego jest 

odpowiednim źródłem mezenchymalnych komórek macierzystych. Dodatkowo zaobserwowano, 

że dodatek MSCs podczas dojrzewania oocytów prowadził do poprawy rozwoju zarodkowego, 

podobnie jak dodatek MSCs podczas hodowli zarodków skutkował wyższą liczbą morul i 

blastocyst. 

Należy zauważyć, że potrzebne są dalsze badania do pełnego zrozumienia tego, jak najlepiej 

wykorzystać MSCs podczas dojrzewania oocytów i hodowli zarodków kota domowego in vitro 

w celu optymalizacji technik wspomaganego rozrodu przeznaczonych dla tego gatunku, z 

nadzieją na możliwość ich przyszłego zastosowania u dzikich kotowatych. 
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1. Introduction  

There are currently 40 cat species globally, among which only the domestic cat (Felis Catus) is 

not endangered or threatened with extinction because of habitat loss, degradation, and illegal 

hunting. The constantly decreasing wild cat population results in a growing demand for 

conservation strategies: translocation, protection, habitat management, captive breeding and 

improving assisted reproduction techniques to save their gene reserve [1].  

Protecting endangered species through assisted reproduction techniques (ART) is crucial for 

maintaining biodiversity and preventing the extinction of valuable species, but the apparent 

constraints to obtain wild and endangered cats' germ cells cause the domestic cat to become the 

best available biomedical model for ART for these endangered species[2]. Since domestic cats 

are biologically very similar to other felids, it is strongly anticipated that methods developed for 

them in the future could be applied to wild cats as an innovative way of endangered species 

protection. Indeed,  in Felidae, the in vitro embryo production system might become an essential 

tool for wildlife preservation [3]. 

The first successful in vitro fertilisation (IVF) for cats was reported in 1970[4]; since then, more 

advances have been made in ART in cats. It has been shown that oocytes matured in vivo can be 

fertilised and developed in vitro; the first blastocyst formation after IVF and embryo 

development using the oocytes matured in vivo was reported in 1977 [5]. Later, the first kitten 

birth of a domestic cat using IVF was reported in 1988[6]. Moreover, a series of studies have 

been made to improve the efficiency of IVF, and more advanced techniques, such as somatic cell 

nuclear transfer (SCNT)  and intracytoplasmic sperm injection (ICSI), have also been applied 

successfully[7]. The first ICSI kittens derived from in vivo and in vitro matured oocytes were 

born in 1998 and 2000, respectively, and the first domestic cat generated by SCNT was born in 

2002[8,9]. 

However, the success rate is lower than in most other species. The cause may lie in the 

differences in reproductive physiology between cats and other species. The maturation of 

reproductive cells in vitro, their fertilisation, and subsequent embryo development are still not 

fully understood[10]. Significant improvements were made to the culture systems for the 

evolution of embryo technology, and different protocols have been designed to optimise the 

development rate and quality of the embryos generated. Still, the quality of embryos in cats 

15



 

obtained in vitro remains inferior to those produced in vivo, leading to increased embryo 

loss[11,12].  

2. Progress in the culture system for domestic cat oocytes and embryos 

It has been reported that IVM and IVC media contain different exogenous components that 

might affect in vitro oocyte maturation and division, blastocyst formation, and hatching after 

IVF. Some of these factors may have favourable and harmful effects on in vitro maintained cells. 

After years of investigations, the basic nutritional requirements for feline oocytes and embryos 

have been established, guaranteeing success in vitro development[13,14]. Different media 

supplements such as progesterone, oestrogen, gonadotropins or extra-pituitary gonadotropins 

(luteinising hormone - LH and follicle-stimulating hormone - FSH) were exploited and found 

that LH and FSH in the culture medium promote the preservation of the functional gap junctions 

(Transmembrane communication between oocytes and cumulus cells required for the diffusion 

of various compounds) enhancing the oocytes maturation in vitro [15]. Moreover, a recent study 

has shown that different sources (porcine vs. human) and concentrations (0.02 vs. 1.06 IU/ml) of 

FSH  were used as a supplement for cat cumulus-oocytes complexes (COCs) and highlighted that 

an optimal hormone supplementation resulted in full maturation of oocytes and transcription 

ability of target gene[16]. 

The antioxidants and growth factors have been shown to have a major role in the regulation of 

apoptosis, cell proliferation and differentiation; cat oocytes matured in IVM with epidermal 

growth factor, resulting in late-stage embryo development (blastocyst) and higher rat (37.5%) 

and developmental competence (60.9%), further confirming the positive effect of this growth 

factor[17]. During the in vitro maturation, the oocytes are exposed to an adverse impact of 

reactive oxygen species (ROS) to stimulate the endogenous cell defence system. The 

supplementation of antioxidant is crucial for oocyte's functional integrity; adding a cysteine 

alone or in association with cysteamine or ß-mercaptoethanol into IVM maintains reduced 

cysteine available for the cellular synthesis of Glutathione (GSH) and avoid the depletion of 

GSH[15,18]. 

While it is difficult to determine what compounds are necessary for a good maturation of cat 

oocytes, some supplements like a calf (FCS) or foetal bovine serum (FBS) may cause an 

inhibitory effect on maturation, unlike bovine serum albumin (BSA), which is a good protein 

supplement[19,20]. 
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As with all cells, cat oocytes metabolise glucose via glycolysis, the tricarboxylic acid cycle, and 

the pentose phosphate pathway (PPP)[21]. Resumption of meiosis is related to elevated activity 

of glycolysis and the PPP, as well as increased activity of hexokinase (glycolysis and PPP), 

phosphofructokinase (glycolysis), and glucose-6 phosphate dehydrogenase (PPP) within the 

cytoplasm of the oocyte[21,22]. 

In mice, gonadotropin-induced meiosis is dependent on the presence of glucose. Increased 

glucose metabolism through one or more metabolic pathways also co-occurs with the 

progression of meiosis to MII in oocytes from cats [23,24]. 

In primate oocytes, glucose is necessary for cytoplasmic maturation, although nuclear maturation 

can occur in the absence of carbohydrates. In addition, elevated glucose metabolism in mature 

oocytes is correlated with and predictive of improved embryonic development in cats and cattle. 

Similarly, oocytes matured in vitro from cats and pigs metabolise significantly less glucose and 

have lower developmental potential than oocytes matured in vivo [25,26]. These findings 

highlight the importance of glucose metabolism in oocyte maturation and the interactions 

between nuclear and cytoplasmic maturation. 

To mimic the natural environment for fertilisation and embryo development, synthetic oviduct 

fluid based on biochemical and physiological research of the ovine oviduct, Earle's salt solution 

or Tyrode's salt solution, has been successfully used in cats during embryo production in 

vitro[27,28]. 

To identify the factors involved in the early stage of embryo development, the distribution of the 

proteins in cat oviduct was investigated using the matrix-assisted laser desorption/ionisation 

imaging mass spectrometry (MALDI-IMS), peptides involved in cellular damage response were 

identified in the oviduct, infundibulum, isthmus and ampulla among these peptides are thymosin, 

keratin and defensin[29,30]. 

In order to understand the specific cat embryo requirements during IVC and the effect of in vitro 

conditions, embryo gene expression was investigated, and it has been proved that gene 

expression depends on several parameters, in vivo and in vitro derived embryos, the culture 

medium, the embryo stage, and spermatozoa status. Moreover, the interruption of cellular 

division after a few cell cycles exists in cat species[31,32]. Studying the link between the 

consumption and the production of amino acids during IVC and the developmental capability of 

the embryos might also be exciting to understand cat embryo requirements better and, for 
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instance, to explain whether the developmental block in vitro, the interruption of cellular 

divisions after a few cell cycles, really exists in this species[33]. 

Current IVF results for cat species are considered unsatisfactory; approximately 60% of fertilised 

oocytes do not complete the pre-implantation phase. The cleavage of a one-cell embryo 

characterises this period until just beyond the blastocyst stage and represents a highly dynamic 

period of embryogenesis. At this point, the embryo must undergo several cell divisions, 

activation of the embryonic genome, epigenetic reprogramming, differentiation into two cell 

types, compaction, and development of the blastocoel cavity[34]. The embryos unable to 

accomplish their mission do not survive beyond the eight-cell stage; this phenomenon, known as 

developmental block, usually occurs at earlier embryo stages and is often associated with the 

maternal-to-zygotic transition (MZT), the embryonic genome activation[35]. In cats, a morula-

to-blastocyst block coincident with the timing of in vivo embryo compaction, blastocoele 

formation and transition from the oviductal to the uterine environment was reported[36]. 

However, the exact timing of MZT is still unknown. 

Few in vivo and in vitro embryogenesis studies in cat suggested that the developmental block 

may occur at the five- to eight-cell stage[37,38]. In contrast, a more recent study describes a 

"first wave" of embryonic gene activation at the 2-cell stage, followed by a greater wave during 

later development[39]. The final result of oocyte maturation, fertilisation and embryo 

development in vitro depends on the chemical factors in the medium, but it's important to 

consider the physical elements. Acting on biological factors may have a remarkable impact on 

chemical factors. 

 

3. Oocytes, embryos communication in the absence of maternal tract  

 

In the absence of the genital tract, when the gametes are being cultured in vitro, there is a lack of 

interaction between the gametes and several components present in the reproductive system 

during oocyte maturation, fertilisation and early stages of embryo development. In a semi-

defined culture medium, the gametes lack the presence of paracrine or endocrine factors because 

all communication with the maternal tract is missing. Nevertheless, even without contact with 

the cells from the genital tract, oocytes and preimplantation embryos can promote their own 

development in vitro by the production of autocrine factors, and, in this way, they can 
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communicate with each other[40,41]. This accumulation of autocrine factors is typically 

achieved by culturing the oocytes or embryos in large groups, around 10–15 embryos in a droplet 

of medium covered by oil to avoid evaporation[42]. Recent advances point out that contact of 

oocytes and embryos with somatic oviduct cells, mesenchymal stem cells (MSCs), granulosa 

cells and extracellular vesicles (EVs) in the reproductive environment helps to obtain in vitro-

derived embryos with developmental levels close to those embryos derived in vivo[41,43]. 

4. Co-culture system using stem cells  

Over recent years and up to the present, we have seen a significant increase in ART. Most 

commercial in vitro production systems of mammalian embryos involve static co-culture systems 

to create physical contact between the gametes and somatic cells[44]. These systems use 

different helper cells/feeders such as primary epithelial cells from oviducts, oviductal ampullae, 

granulosa and cumulus cells, uterine endometrial cells, umbilical derived mesenchymal stem 

cells (MSCs), as well as established cell lines such as VERO cells have been used extensively for 

co-culture techniques to study their beneficial effect on the maturation of oocytes and the 

development of greater quality embryo, implantation rate (IR) and pregnancy rate (PR) (Table1). 

It has been demonstrated that these feeder cells have more than one action. It may be that such 

cells can release embryo-trophic factors into the co-culture medium and can remove inhibitory or 

toxic factors present in the medium or derived from the embryo [45]. There is also evidence that 

these cells may be beneficial by lowering the concentrations of ions and metabolising the glucose 

in the medium, allowing the embryos to be exposed to bearable levels of glucose[46]. The co-

culture system also appears to overcome the developmental block[47]. This may be mediated by 

the release of growth factors such as vascular endothelial growth factor, insulin-like growth 

factors (IGF) I and IGF-II, platelet-activating factor and epidermal growth factor, transforming 

growth factor (TGF)-α and TGF-β, essential for the activation of the embryonic genome and for 

normal embryonic development [48]. The feeder cells may also protect the embryos from oxygen 

toxicity. Co-culture of embryos provides favouring growth up to the blastocyst; it also increases 

the availability of more cells for biopsy from the blastomere for genotypic evaluations and by 

better synchrony between the embryonic stage and site of placement of transfer (uterus) [49]. 

Recently,  mesenchymal stem cells have been used most in a co-culture system with embryos 

and /or oocytes in mammals, including pigs, cows, rabbits, mice, and horses. These studies have 
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been based on the fact that MSCs have different tissue origins, are easy to culture and are 

capable of secreting a variety of substances that are collectively competent in modulating the 

surrounding microenvironment and enhancing germ cell development in vitro[44]. 

 

Feeder cell type co-culture stage References  

Granulosa cells IVC [50] 

Cumulus cells IVM [51] 

Ampullary cells IVM/IVC [52] 

Tubal/oviductal epithelial cells IVC [53] 

Endometrial epithelial cells IVC [54] 

Endometrial stromal cells IVC [55] 

Epithelial cancer cells IVC [56] 

Vesicles: ciliated oviduct cells, trophoblast  IVC [57,58] 

Vero cells IVC [59] 

Fibroblasts: skin, placental, embryonic, 

oviduct cells  
IVM/IVC [60–62] 

Buffalo rat liver (BRL) cells IVC [63] 

Decidual stromal cells  IVC [64] 

Granulosa-lutein cells  IVC [65] 

Mesenchymal stem cells( placenta, 

umbilical cord, adipose tissue, amniotic 

fluid) 

IVM [66–68] 

   

Table 1: Cells used as a feeder layer in the culture systems for oocytes and early embryos in 

vitro Adapted from Nicolas M et al.[69]  
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5. Mesenchymal stem cells - an overview 

  

The most common sources of MSCs are of adult origins, such as bone marrow or adipose tissue, 

but their removal requires an invasive procedure. Perinatal sources like the umbilical cord and 

Wharton's Jelly offer more accessibility and significant MSCs with a higher proliferation rate 

and more potent immunomodulatory action. They were recently isolated from different adult 

tissues and represent a promising candidate for cell-based therapies. Many studies have shown 

that MSCs acquire morphology and change phenotype to express many specific markers 

depending on the environmental conditions in which they are cultured. Differentiations in 

cardiomyocytes, neurons, pancreatic cells, hepatocytes, renal tubular cells, and skeletal or 

smooth muscle cells have been observed. The most essential clinically applicable characteristics 

of mesenchymal stem cells depend on their self-renewing and the ease of proliferation in culture. 
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Figure 1: The picture summarises the variety of origins and differentiation potential of 

mesenchymal stem cells (MSCs) 

 

6. Mesenchymal stem cells derived soluble factors  

 

MSCs have already been applied in preclinical and clinical studies to successfully treat diseases 

such as type I diabetes, multiple sclerosis, cirrhosis of the liver, and Crohn's disease[70]. These 

studies demonstrate the crucial clinical potential of mesenchymal stem cells. MSCs can be very 

immunosuppressive and have been found to suppress T-cell proliferation and cytokine 

production. The HLA-G protein (Human Leukocyte Antigen), a non-classical HLA class I 

molecule, has also been considered to have an immunosuppressive effect on MSCs. The ability 

of MSCs to regenerate injured tissues is closely linked to their anti-inflammatory properties[71]. 

MSCs act locally through cell-cell interactions based on receptor-ligand bonds or through 

nanotubes that transfer molecules and organelles. However, they intervene mainly at the 

systemic level by secreting trophic factors that can be transported by extracellular vesicles (EVs). 

They can thus promote cell viability and angiogenesis by producing growth factors (VEGF, 

PDGF, bFGF). They also stimulate the recruitment of endogenous stem cells by secreting 

chemokines, such as SDF1 or CCL5, and reduce fibrosis by producing KGFs, MMP-9, bFGF, 

MMP-2, and HGF; they intervene in the regulation of apoptosis, via the production of HGF, b 

Fgf, IGF1, and oxidative stress, by the release of HO-1 or EPO. Finally, they possess anti-

inflammatory activity by releasing IDO, HLA-G5, PGE2, TSG6, IL-6, IL-1, etc. The secretion of 

all these factors thus gives these cells an unusual trophic activity[70,71]. 

It has also been shown that injection of MSCs conditioned medium, not the cells themselves, can 

induce the same effects as MSCs. This is due to the composition of MSCs secretions containing 

soluble factors and EVs. EVs are involved in tissue repair, immunomodulation, and proliferation. 

A diverse population of EVs can be found in biological fluids (blood, saliva, semen, vaginal 

fluids, mucus and urine). Scientists mainly describe three types of EVs according to their size 

and biogenesis. The biggest vesicles are secreted after cell apoptosis (large EVs of 1 to 5 µm) 

called apoptotic bodies. EVs of 0.1 to 1 µm are called microparticles, ectosomes, or 

macrovesicles. They are usually produced by cells during stress or metabolic changes and result 

from the appearance of the plasma membrane. According to the literature, the latest EVs are 
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called exosomes, with a size varying from 30 to 150 nm according to the literature, and they are 

secreted continuously, regardless of the cell state. MSCs have been shown to generate more EVs 

than other cell types, making them an attractive source of vesicles for therapeutic 

applications[72]. 

MSCs possess multi-potentiality and properties of immunological and inflammatory regulation. 

Cell therapy based on their transplant appears to be a promising approach at present, as these 

cells can lead to adipocytes, osteoblasts, chondrocytes, smooth muscle cells, and endothelial 

cells[73]. The use of MSCs in cell therapy appears to be due to different soluble factors 

summarised in Figure 2. 

 

 

 

Figure 2: Summary of the soluble factors released by mesenchymal stem cells and their 

biological function ( Adapted from Alberto et al)[73] 
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CHAPTER 2 

AIMS OF THE THESIS 
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Understanding the nutrient requirements and physiology of oocytes and embryos would led to 

the development of more suitable culture media. The success of such media can be attributed to 

catering to the oocytes and embryo-changing nutrient requirements while minimising the culture-

induced stress. Co-culture systems are more effective than chemically defined mediums in 

producing mammalian embryos. Recently, Mesenchymal Stem Cells (MSCs) have emerged as a 

promising source of stem cells in co-culture systems. Furthermore, it has been shown that MSCs 

are able to secrete a variety of autocrine and paracrine factors, including chemokines, cytokines, 

growth factors, extracellular matrix (ECM) and proteases, enabling the possibility of using them 

as feeder layers in a co-culture to improve the quality of the oocytes maturation and the embryo 

development in vitro mammalian species. 

The specific scientific aims of the presented thesis can be defined as follows: 

 

1. Review of the current knowledge on mesenchymal stem cells in feline and canine 

medicine: their origin, characteristics, in vitro therapeutic applications, mechanisms of 

biological action and challenges in their therapeutic application (Chapter 4). 

 

2. Isolation and characterization of feline mesenchymal stem cells from the umbilical cord 

and two different anatomic regions: vessels, and Wharton's jelly (Chapter 5). 

 

 

3. Evaluation of the addition of mesenchymal stem cells as a feeder layer during feline 

oocyte maturation and embryo development in vitro (Chapter 6). 
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CHAPTER 3

MATERIAL AND METHODS
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In order to isolate and characterise Mesenchymal stem cells from feline umbilical cords, we 

followed the methodology below. The chemicals and reagents were purchased from Sigma 

Aldrich or Thermo Fisher Poland, unless stated otherwise. Ethical approval was not sought, as it is 

not required for studies carried out on cells obtained from tissues  that were surgical waste 

(Decision No. 004/2021). 

1.1.Obtaining umbilical cord tissue:  

The full available length of umbilical cords were collected from queens of different breeds aged 

from 1,5 to 5 years old. The queens were patients of the Department of Reproduction and Clinic 

of Large Animals in Wroclaw. Directly after natural delivery or during caesarean sections, the 

umbilical cords were dissected with a scalpel blade from the placenta on one side, and on the 

other side about 1 cm far from the kitten's abdomen. The umbilical cords were stored in a PBS 

with addition of 1% penicillin-streptomycin solution at 4°C before the transfer to the laboratory. 

The general patient data: the age of the queen and the number of newborns were registered.  

1.2. Tissue harvest:  

Within 2 hours of collection, umbilical cords were cleansed with alternating washes of cold PBS 

+1% penicillin-streptomycin. Using sterile surgical forceps and a #10 scalpel blade, the 

anatomical regions of each cord were separated: the amniotic epithelium, the umbilical arteries 

and veins (UCV) were resected, and the Wharton's jelly (WJ) were separated. 

1.3. Mesenchymal stem cell isolation and culture: 

Mesenchymal stem cells were isolated and cultured as described below, the collected WJ, UCV 

and the entire cord were placed in an individual sterile culture dish. The tissue was minced into a 

2 mm square using a bistoury blade and then transferred to 15 ml centrifuge tubes containing 

0.02% of collagenase type-I in Dulbecco's Modified Eagle's Medium-low glucose (LG-DMEM). 

Samples were incubated at 37 °C for 20 minutes for tissue digestion. Afterwards, the samples 

were centrifuged at 300 ×g for 5 minutes and washed in PBS. Next, the stromal vascular fraction 

was resuspended in a stromal medium: LG-DMEM with 10% fetal bovine serum (FBS) and 1% 

antibiotic solution and cultured in T-25 flasks (Techno Plastic Products AG, Switzerland). Half 

of the medium was changed after 24 hours, and then the entire medium was changed twice per 

week; after one week, the stromal vascular fractions were removed, and the flasks were washed 

with 3 mL of PBS. The cells were cultured to reach 80% confluence. 
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1.4. Storage of cells: 

When the culture wells are about 80% confluence, the cells are washed three times with 3 mL of 

PBS and then detached using trypsin-EDTA (3 mL of trypsin-EDTA solution per flask). After 3 

min of incubation at 37°C, the action of trypsin is inhibited with 3 mL of stromal culture 

medium. The cell suspension is then centrifuged (300 ×g, 5 min) and resuspended in a culture 

medium, and then the cells are counted in the Thoma counting chamber. After further 

centrifugation (300 ×g, 5 min), the cell pellet was suspended in 10% of the final DMSO 

cryopreservation solution and cooled for 1 hour at a temperature of -20, then at -80°C within the 

next 24 hours. The cells were then stored in liquid nitrogen (-196°C) before further use. 

1.5. Thawing the cells: 

The cells were rapidly thawed in a water bath at 37°C, then re-suspended in 10 mL of culture 

medium. They are then centrifuged (300 ×g, 5 min), and the cell pellet is diluted in 1 ml of 

culture medium. Cells were counted using Trypan blue and Thoma chamber; finally, cells were 

seeded at 1000 cells/cm² in T25 with 3 mL of a stromal medium per culture flask or T75 with 9 

mL of medium. These culture flasks were placed in a humidified incubator (5% CO2,  5% O2) at 

37°C until reaching (80% to 90%) confluence. The medium was changed twice per week. 

1.6. Cell doublings and doubling time:  

Cells isolated from WJ, UCV, and WUC were quantified in 12 well plates(Techno Plastic 

Products AG, Switzerland), as previously described by Zhang et al. Cells at passage 1 were 

seeded in triplicate at a density of 5× 103 cells/cm. Cell numbers were assessed after 2, 4 and 6 

days of culture using a trypan blue and hemocytometer. Cells doubling numbers (CD) and 

doubling time (DT) were calculated according to the equation below: 

CD = ln(Nf /Ni)/ln(2)  

DT = CT/CD 

Where culture time CT = culture time, Nf = final cell number, and Ni = initial cell number. 

The mean and the standard error were calculated for all data obtained.  
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1.7. RNA extraction and real-time reverse transcription (qRT-PCR) 

Feline-specific primers were designed for SOX2, NANOG and OCT-4 (Table); cells were 

seeded in 6-well plates at a density of 1 × 106 cells per well in a stromal medium until reaching 

around 90% confluence. Cells were rinsed twice with PBS then total RNA was isolated using 

TRI Reagent according to the manufacturer's instructions. RNA concentration and purity were 

measured using a nano spectrophotometer (denovix ds-11). Complementary DNA (cDNA) was 

prepared using isolated RNA and a Tetro cDNA Synthesis Kit (Bioline, London, UK). To 

determine the expression levels of MSCs pluripotency markers, target gene mRNA levels were 

quantified with real-time reverse transcription-polymerase chain reaction (qRT-PCR) using the 

SensiFAST SYBR Green Kit (Bioline, London, UK) in a CFX Connect™ Real-Time PCR 

Detection System (Bio-Rad). For the 10 μl reaction volume, the following cycling conditions 

were applied: 95 °C for 2 min, followed by 40 cycles for 15 at 95 °C, annealing for 15 s, and 

elongation at 72 °C for 15 s. The results were determined relative to the reference gene 

glyceraldehyde 3-phosphate dehydrogenase (GAPDH). The relative level of the expression was 

calculated using the 2 −ΔCQ method. 

Table 2: Primer sequence information for feline of WJ-MSCs, UCV-MSCs and WUC-MSCs. 

 

Gene Primer Sequence 5'–3.' Annealing 

temperature (°C) 

SOX2 F : 

R : 

CCGAGTGGAAACTTTTGTC 

AAAATCTGCAGGAGATATGC 

65.4 

OCT-4  F : 

R : 

AAAATCTGCAGGAGATATGC 

ACTCGGTTCTCGATACTTG 

54.60 

NANOG F : 

R : 

GTGACAACTTCACAAAATCG 

TCCAGTTTCTCTTCTAGTTCC 

54.45 

 

GAPDH F : 

R : 

GATGCCCCAATGTTTGTGA 

AAGCAGGGATGATGTTCTGG 

55.60 

 

1.8. Immunophenotyping by Flow cytometry 

Antibodies against CD90, CD44, CHMII, and CD 34 (Table 2) specific for feline antigens or 

validated for feline cross-reactivity were used to label the cells for flow cytometry. With the 

exception of CD44 and CHMII, antibodies were conjugated with PE or FITC. Cells at the 2nd 

passage were detached using trypsin EDTA, then centrifuged, and thereafter the cells pellet was 

resuspended in PBS with 1% FBS and counted. Cells aliquots containing 105 cells from each 
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population were resuspended in PBS of labelled antibodies, and the mixtures were incubated in 

the dark at room temperature for 30 min. Following the incubation with antibodies, cells were 

rinsed with PBS. For CHMII and CD44 detection, cells were additionally incubated with a 

secondary antibody. An appropriate isotype-matched control antibody was used. Cell 

fluorescence was quantified using FACSCalibur, equipped with a 488-nanometer laser. Data 

were recorded for at least 5,000 events using CellQuest version 3.3 software. Unlabelled cells 

and isotype controls were included in all assays.  

Table 3: Antibodies used for feline umbilical cord mesenchymal stem cells  

   

Antibody Isotype  Label 
Cross / 

reactivity 
Host Manufacturer Catalogue # 

Antibody 

dilution  

MHC Class 

II  
IgG2b Purified  Cat  Mouse  Bio-Rad MCA2723  4:100 

CD90  IgG1,k PE Human Mouse  
BD 

Biosciences 
555596 1:10 

CD34  IgG1,k FITC  Human Mouse  Bio-Rad 555821 1:10 

CD44 IgG1 Purified  Human Mouse  Bio-Rad 
MCA1719G

A 
4:100 

Control IgG1 PE       NA Mouse  Antibodies  ABIN376413 1:10 

Control IgG1 FITC        NA Mouse  Invitrogen GM4992 4:100 

Secondary  

Antibody 

IgG 

(H+L) 
FITC  Mouse Goat Invitrogen A16079 1:1000 

 

 

1.9. Tri-lineage differentiation assay 

Osteogenic, chondrogenic, and adipogenic differentiation ability was confirmed in cell isolates 

(WJ-MSCs, UCV-MSCs, and WUC-MSCs) cultured in 6 well plates at passage number 3. The 

experiments were conducted in two groups- a treated group cultured in a stromal medium to 

reach about 80% confluence, then maintained in a specific induction medium, and a control 

group cultured in a stromal medium only. The results were observed and analysed under an 

Olympus IX73 inverted microscope. 

To determine the adipogenic differentiation, cells were cultured at a density of 1x105 per well in 

Adipogenic Differentiation Medium (Mesenchymal Stem Cell Adipogenic Differentiation 
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Medium. Sigma-Aldrich. Poland) for 3 weeks. The culture medium was changed every 3 days.to 

detect lipid droplet accumulation, the cells were washed two times with PBS, fixed with 4% 

formaldehyde (PFA) (Sigma-Aldrich. Poland) and incubated at room temperature for 45 min, 

followed by three rinses with PBS. Finally, the cells were incubated for 5 min in 60% 2-propanol 

and then stained with Oil Red O ( Sigma-Aldrich. Poland) for 5 min at room temperature. 

To access the osteogenesis, the cells were cultured in the osteogenic induction medium 

(Mesenchymal Stem Cell Growth Medium. Sigma-Aldrich. Poland)  for 3 weeks; the medium 

was changed twice a week, and the accumulation of calcium in colonies was confirmed using 2% 

Alizarin Red S( Sigma-Aldrich. Poland). First, cells were washed two times with PBS, fixed with 

4% PFA for 30 min, and then incubated with 2% Alizarin Red S in the dark for 15 min at room 

temperature.  

The cells were also cultured in a chondrogenic induction medium (Mesenchymal Stem Cell 

Chondrogenic Differentiation Medium. Sigma-Aldrich. Poland) for 21 days. After the 

differentiation steps were completed, the cells were rinsed gently with PBS. Then, the cells were 

incubated in 4% PFA at room temperature to fix the cartilage for 40 min. Followed by two 

washes with distilled water to confirm the cartilage formation; the cells were then stained with 

Alcian Blue staining solution (Merck KGaA, Darmstadt, Germany) and incubated at room 

temperature in the dark for 50 minutes. 

The results of this study were published in the article titled: 'Feline umbilical cord 

mesenchymal stem cells: Isolation and in vitro characterisation from distinct parts of the 

umbilical cord' Theriogenology (2023) 201:116–25. doi:10.1016/j.theriogenology.2022.11.049 

 

2.1. Preparation of mesenchymal stem cells for the co-culture 

To prepare the fWJ-MSCs for co-cultivation with feline oocytes or embryos, the cells at a 

density of 5× 103 cells/cm were cultured in a stromal medium until they reached about 90% 

confluence. MSCs were then treated with10 µg/ mL mitomycin C for 2 hours to inactivate them. 

After 5 washes with PBS, the cells were maintained in LG-DMEM for 24 hours before co-

cultivation. 
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2.2. Ovaries and oocytes recovery 

Ovaries from sexually matured domestic queens subjected to a routine ovariohysterectomy or 

ovariectomy were obtained at the University clinic or from local veterinarians in Wroclaw. After 

surgical removal, ovaries were stored at 4 °C in PBS with 1% of Antibiotic Antimycotic solution 

over a period ranging from 2 to 24 h before the recovery of cumulus-oocyte complexes (COCs). 

To collect COCs, ovaries were sliced with a #10 scalpel blade in an OPU medium (IVF 

Bioscience, Bickland Industrial Park, Falmouth, UK). Isolated COCs were selected under a 

dissecting microscope. Only oocytes with dark ooplasm and several layers of cumulus cells were 

selected for further procedures. 

2.3. In vitro maturation of cat oocytes 

In order to evaluate the effect of different culture systems on the in vitro oocytes maturation, 

groups of 15-20 COCs were matured in a four-well plate in 400 µl of plain equine maturation 

medium (EqM) (IVF Bioscience, Bickland Industrial Park, Falmouth, UK) and plain bovine 

maturation medium (BoM) (IVF Bioscience, Bickland Industrial Park, Falmouth, UK) and/or in 

the same medium with MSCs co-culture: EqM+MSCs or BoM+MSCs, covered with sterile 

mineral oil and cultured for 24 h at 38.5°C in 5% CO2 in the air with maximum humidity. 

2.4. Assessment of oocytes maturation 

After 24 hours of the oocytes maturation period,  the oocytes were denuded from the remaining 

cumulus cells using a glass pipette that was overheated and pulled to achieve diameters of 

approximately 165 µm, slightly larger than the oocyte. Oocytes were aspirated and blown out 

repeatedly until removing the most of cumulus cells. The oocytes were then washed twice and 

fixed with 4% PFA for 15 minutes flowed by washing in PBS and then incubated in 4, 6-

diamino-2-phenylindole (DAPI) stain solution for 10 min in the dark at room temperature and 

mounted on glass slides in drops of Vectashield (Vector Laboratories, LTD UK). The oocytes 

were classified as degenerated oocytes (irregular border and fragmentation of cytoplasm)  and 

immature (without the first polar body extrusion), or metaphase II (MII) stages of the maturation 

process with distinct polar bodies or two separate and bright chromatin spots under a 

fluorescence microscope (Olympus IX73) at 360 excitations and 450 nm emission. 
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2.5. In vitro fertilisation: 

For in vitro fertilisation, the matured and denuded oocytes were fertilised using frozen-thawed 

semen cryopreserved and thawed according to the protocol described by Partyka et al. 2012.[74]  

In brief: frozen semen straw was thawed in a water bath at 37°C for 30 seconds, then washed in 

IVF medium (IVF Bioscience, Bickland Industrial Park, Falmouth, UK) followed by 

centrifugation at 35000 rpm for 5min. The oocytes were incubated with 1×106 motile 

spermatozoa/ml in 400 µl of IVF medium for 18 hours under mineral oil at 38.5°C in the 

maximum humidified air atmosphere with 5% CO2.   

2.6. Embryo culture and assessment of the embryo development: 

After fertilisation, the presumptive zygotes were transferred to a new plate in a droplet of 50 µl 

of either pure BoM or EqM (IVF Bioscience, Bickland Industrial Park, Falmouth, UK) medium 

or to the co-culture BoM+MSCs, EqM+MSCs medium (depending on the part of the 

experiment), covered with mineral oil and incubated at 38.5°C in 5% CO2 in the air with 

maximum humidity for up to 8 days. To assess embryo development, morphological changes 

were evaluated and noted every 8 to 12 hours. The subsequent developmental stages were noted 

and compared for each group, and the blastocyst formation was recorded. 

2.7.Study design: 

Experiment 1: The effect of the MSCs co-culture on cumulus cell expansion and oocyte 

maturation.  

This study evaluated the nuclear maturation and cumulus cell expansion of oocytes after 24 

hours of incubation in different maturation media. 180 oocytes were matured in four 

experimental groups compared, including 1) Maturation in BoM, 2) Maturation in EqM, 3) 

maturation in BoM+MSCs, and 4) Maturation in EqM+MSCs. In each group, 45  oocytes were 

matured; in each group, 3 independent replicates of 15 oocytes were performed. 

a. Assessment of cumulus cells expansion: 

We evaluated the degree of cumulus cell expansion after 24 hours of oocyte maturation in  EqM, 

BoM EqM+MSCs and BoM+MSC. The scoring system was as follows: degenerated (oocytes 

with no cumulus cells attached), expended (more than three layers of cumulus cells expanded), 

and limited expansion (less than three layers of cumulus cells expended) and no expansion.  
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b. Assessment of nuclear maturation 

An extrusion of the first polar body (Metaphase II) from each denuded oocyte was assessed 

using DAPI staining under the fluorescence microscope (Olympus IX73) at excitation 360 and 

450 nm emission. Oocytes with distinct polar bodies or two separate and bright chromatin spots 

were classified as entering the MII stage.  

Experiment 2: The effect of the co-culture with MSCs during oocyte maturation on embryo 

development.  

In this part of the study, we assessed the effect of the co-culture system with MSCs during 

maturation in BoM and EqM on the subsequent embryo development after in vitro fertilisation. 

In total, 565 oocytes were matured and cultured in four experimental groups and 10 replicates 

per group: 1) Maturation in BoM / embryos culture in BoM (n = 103),  2) Maturation in EqM/ 

embryos culture in EqM (n = 109), 3) Maturation BoM+MSCs / embryos culture in BoM (n = 

124), 4) Maturation in EqM+MSCs / embryos development in EqM, (n = 109). 

Experiment 3: The effect of co-culture with MSC during embryo development. 

In this experiment, the maturation of oocytes was performed in pure EqM or in BoM, while the 

embryo development was carried out in pure BoIVC or EqIVC medium or with MSCs in 

addition to evaluate their effect on the morula and blastocyst formation. In total, 486 oocytes 

were matured and cultured in four experimental groups, and 10 replicates per group: 1) 

Maturation in BoM/ embryos culture in BoM (n =103), 2) Maturation in EqM/ embryos culture 

in EqM (n =109), 3) Maturation BoM/ embryos culture in BoM+MSCs (n =132), 4) Maturation 

in EqM / embryos development in EqM+MSCs (n =142).  

2.8.Statistical analysis: 

In this study, the data were analysed using one-way ANOVA followed by Tukey's multiple 

comparison test using Statistica software (TIBCO, USA). Values are shown as means ± SEM. 

The significance level was P < 0.05, and at least three independent replicates were performed in 

all experiments. Nonparametric data, such as differences in the percentage values between 

groups, were assessed using the chi-square test. The result of this second study was published in 

the article with the title Feline Wharton's Jelly-derived Mesenchymal Stem Cells as a Feeder 
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Layer for Oocytes and Embryos Culture in vitro. Frontiers in veterinary sciences journal 

(2023). 10:1252484. doi: 10.3389/fvets.2023.1252484. 
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Mesenchymal stem cell therapy is an exciting and rapidly advancing area of veterinary medicine 

that could have significant implications for the future. Before commencing our laboratory 

experiments, we extensively reviewed previously published research on this topic. The 

comprehensive survey was titled "Mesenchymal Stem Cells: Generalities and Clinical 

Significance in Feline and Canine Medicine" and was published in the Animals Journal (2023) 

13:1903. doi: 10.3390/ani13121903. 

Our primary goal was to gain a comprehensive understanding of mesenchymal stem cells 

(MSCs), including their various sources, characteristics, properties, and clinical applications in 

both cats and dogs.  Therefore, the first publication provided an overview of the different tissues 

that have been investigated for isolating MSCs in cats and dogs, as well as their morphology. We 

also described the criteria that have been identified by other research teams, which served as a 

foundation and guidance during our study.  

We mainly focused on the MSCs' properties, such as anti-inflammatory, immunosuppressive and 

immunomodulatory that make them an excellent option for treating inflammatory diseases in 

cats. Stem cell therapy has the potential to improve the health of felines suffering from various 

illnesses. Therefore, we provided a comprehensive overview of the current proposed mechanism 

of action of MSCs. Additionally, we summarized the numerous studies that used MSCs in 

clinical trials for the treatment of various diseases such as gingivostomatitis, chronic enteropathy, 

asthma, and kidney disease in feline; osteoarthritis, osteochondritis, tendonitis and ligament 

rupture in dogs. We also highlighted the importance of animal safety in veterinary clinical trials 

by checking the Quality-controlled cells (including: cells' origin, storage, composition, freedom 

from contamination, the long-term safety evaluation identifies additional risks i.e. toxicity and 

tumorigenicity).  

 

Information gathered in this review article served as guidance during our study, helped to decide 

on the type of tissue for isolating MSCs, and provided essential data for the laboratory protocols 

we used for culturing and characterizing the MSCs from the feline umbilical cord. 
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Simple Summary: Veterinary regenerative medicine is an area of active research in which mesenchy-
mal stem cells are applied. Mesenchymal stem cells (MSCs)are cells that can be obtained from various
adult tissues; these cells have an extraordinary quality of being able to self-renew and develop
into other cells. MSCs can be used to treat orthopaedic conditions in dogs, asthma, kidney disease,
chronic gingivostomatitis, and inflammatory bowel disease in cats. Most studies have used adipose
tissue-derived MSCs because they are easily obtainable and easy to work with. However, other stem
cells from different tissues may be more suitable for treating certain diseases. In this manuscript, we
report the generalities and the use of mesenchymal stem cells in cats and dogs, and we believe that
the ongoing research in this field will eventually bring us to a point where stem cell treatments for
currently untreatable diseases will become a reality. Finally, veterinary medicine now has access to
new treatments, giving hope for a cure to illnesses in our furry friends.

Abstract: Mesenchymal stem cells (MSCs) are multipotent cells: they can proliferate like undif-
ferentiated cells and have the ability to differentiate into different types of cells. A considerable
amount of research focuses on the potential therapeutic benefits of MSCs, such as cell therapy or
tissue regeneration, and MSCs are considered powerful tools in veterinary regenerative medicine.
They are the leading type of adult stem cells in clinical trials owing to their immunosuppressive,
immunomodulatory, and anti-inflammatory properties, as well as their low teratogenic risk compared
with pluripotent stem cells. The present review details the current understanding of the fundamental
biology of MSCs. We focus on MSCs’ properties and their characteristics with the goal of providing
an overview of therapeutic innovations based on MSCs in canines and felines.

Keywords: mesenchymal stem cells; properties; characteristics; canine; feline

1. Introduction

Current cell therapies use multipotent stromal cells isolated from adult tissue, rep-
resenting an emerging branch of regenerative medicine that aims to restore tissues and
organs damaged by trauma, pathology, or ageing processes. Research on the therapeutic
properties of stem cells in humans over many years has shown the benefits that can be
obtained in inflammatory and degenerative diseases through the use of adult stem cells,
particularly multipotent stromal cells or mesenchymal stem cells (MSCs) obtained from the
bone marrow. Although MSC administration is performed with the support of immuno-
suppressive treatment, autologous MSC, which allows personalised immunomodulation,
seems an interesting approach, limiting the risk of immunisation or faster apoptosis of
MSC. However, this approach requires either isolation from the patients without systemic
diseases or keeping the MSCs for an extended period before transplantation, causing high
additional costs [1]. Several teams have turned to the use of allogeneic MSCs, allowing

Animals 2023, 13, 1903. https://doi.org/10.3390/ani13121903 https://www.mdpi.com/journal/animals 38

https://doi.org/10.3390/ani13121903
https://doi.org/10.3390/ani13121903
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/animals
https://www.mdpi.com
https://orcid.org/0000-0002-9885-9694
https://orcid.org/0000-0002-9836-2506
https://orcid.org/0000-0003-1056-0784
https://doi.org/10.3390/ani13121903
https://www.mdpi.com/journal/animals
https://www.mdpi.com/article/10.3390/ani13121903?type=check_update&version=1


Animals 2023, 13, 1903 2 of 16

the creation of therapeutic batches [2]. This approach is reinforced by the fact that the
injection of allogeneic MSCs seems to have the same immunoregulatory properties in vitro
and in vivo. There is significant interindividual variability of the MSCs, making selecting a
batch with a high immunoregulatory capacity preferable [3]. Stem cell therapy is not lim-
ited to humans. It is also of great interest in veterinary medicine and has already been used
to treat animals affected by degenerative disorders, inadequate diet, and genetic disorders.
It has also been used in animals with various musculoskeletal tissue injuries, primarily
cartilage wear in joints and spinal discs, tendonitis, fractures, and bone degeneration [4].
Veterinarians mainly use mesenchymal stem cells (MSCs), and in recent years, treatments
have been used in companion animals. MSCs provide innovative therapeutic options for
diseases that previously lacked indicated treatments. Thus, protocols for regenerating
damaged structures in joints, ligaments, menisci, and cartilage, similar to those observed
in horses, have emerged in dogs, cats, and rabbits [5–8]. MSCs have vast potential in
the treatment of many animal and human diseases. Randomised and controlled clinical
studies are still necessary to apply such therapies in humans, but the success of many
animal models attests to stem cells’ efficacy and therapeutic potential [9]. This review
summarises the general characteristics and properties of MSCs with a particular focus on
feline and canine MSCs. It also provides an overview of the use of MSCs in cell therapy
and regenerative medicine.

2. Mesenchymal Stem Cells

MSCs are immature cells derived from mesenchyme or embryonic connective tissue,
part of the mesoderm. In adults, they occur in connective tissue. MSCs are present in
varying quantities and with different potentials throughout postnatal life, depending on
the individual source tissue, age, and health [10,11]. The cells can be isolated significantly
from different connective tissues, particularly bone marrow, umbilical cord, and adipose tis-
sue [12]. Adult MSCs can self-renew and generate multiple types of mature and functional
differentiated cells, with differentiation into specific cells of mesodermal origin (adipocytes,
myoblasts, osteoblasts, and chondroblasts), depending on the environment [13,14]. How-
ever, studies have shown that MSCs can also be oriented in vitro towards endodermal
phenotypes (hepatocytes, pancreatic cells) and/or ectodermal (astrocytes and epithelial
cells) phenotypes [15,16]. MSCs have immunomodulation potential and positive effects on
tissue tropism, and these characteristics make them ideal candidates for cell therapy and
immunomodulatory strategies, particularly in systemic or local inflammatory diseases [17].

MSCs were initially isolated from the stromal compartment of bone marrow [18]. They
were subsequently found in almost all postnatal connective tissues [19], umbilical cord
and umbilical cord blood [20], adipose tissue [21], placental tissue [22], and cutaneous
connective tissue [23]. Regardless of their course, all cells have the same basal biological
characteristics, although they may differ in their potential for expansion and differenti-
ation [24]. MSCs are a heterogeneous population of multipotent cells characterised by
clonogenic abilities and differentiation potential. The International Society for Cellular
Therapy’s definition of MSCs is based on three criteria: (i) their ability to adhere to plastic; a
phenotype of CD73+/CD90+/CD105+ and CD45−/CD34−/CD14−, CD11b−/CD19−, or
CD79a−/HLA-DR−; and their potential for differentiation into osteoblasts, chondrocytes,
and adipocytes [25]. Some authors [26,27] have also suggested using other markers to
select multipotent subpopulations, such as the STRO-1 marker. This marker expressed
precociously on the cell surface is used to isolate mesenchymal progenitors within a cell
population; its expression decreases gradually in culture. Embryonic stem cell markers,
such as Oct-4, Nanog, SSEA-3, SSEA-4, TRA-1-60, and TRA-1-81, have also been described
on the surface of MSCs derived from dental pulp. Some properties of MSCs are particularly
promising in therapeutics, but they are only identifiable in vivo and are mainly related to
the immune system.

MSCs have immunosuppressive and anti-inflammatory capabilities. The cells can
modulate the immune response through their synthesis of anti-inflammatory molecules and
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mediators, such as interleukin (IL)-6 and macrophage colony-stimulating factor, secretion of
interferon (IFN)γ, tumor necrosis factor (TNF)-α, and control of monocyte maturation [28].
MSCs have a significant role in tissue regeneration. Both transplanted and resident MSCs
can contribute to tissue repair by secreting molecules involved in homeostasis, including
soluble glycoproteins of the extracellular matrix, cytokines, and growth factors, which are
responsible for reducing inflammation and stimulating tissue regeneration [29]. MSCs
also have a significant angiogenic ability. This ability is critical for repairing and restoring
organ function because oxygen supply to the tissue depends on restoring blood vessels.
Some factors produced and secreted by MSCs appear to be primarily responsible for this
effect. Molecules that have been identified in their secretome play a significant role in
angiogenesis, including vascular endothelial growth factor (VEGF), fibroblast growth factor
(FGF)-2, angiopoietin-1, chemokine (C-C motif) ligand (CCL)2, IL-6, placenta growth factor,
and cysteine-rich protein and angiogenic inducer 61 [30,31]. More factors are released
by MSCs, including soluble factors rich in immunomodulatory molecules, chemokines,
growth factors, and cytokines. The vesicular fraction contains extracellular vesicles (EVs),
which are classified primarily by their size [32,33]. Exosomes originate from the endocytic
pathway and range in size from 30 to 200 nm on average and are composed of secondary
metabolite, nucleic acids, proteins, and lipids. The macrovesicles originate from the cell
plasma membrane and, in size from 200 to 1000 nm, contain lipids, proteins, secondary
metabolites, and nucleic acids. Apoptotic bodies released by dying cells with an average
between 50 and 100 µm in diameter contain nucleic acids, organelles, and proteins. All
EVs participate in intercellular communication except for apoptotic bodies, which typically
function in phagocytosis [32–34]. The properties of MSCs are maintained due to the
interactions between these cells and factors in their environment, including stromal cells,
signalling molecules, the extracellular matrix, and adhesion molecules. Once the cells leave
these environments, they begin differentiation; however, the molecular and environmental
mechanisms that control differentiation are not fully elucidated. Therefore, many studies
within the veterinary field are focused on expanding the understanding of these cells [35].

3. The Therapeutic Role of MSCs In Vitro

The ability of MSCs to regenerate injured tissues is closely linked to their anti-
inflammatory properties. MSCs act locally through cell–cell interactions based on receptor–
ligand bonds or nanotubes that transfer molecules and organelles. However, they intervene
mainly at the systemic level through trophic factors secreted directly in the microenvi-
ronment or transported by extracellular vesicles [36]. The MSCs can thus promote cell
viability, proliferation, and angiogenesis by producing growth factors (VEGF, platelet-
derived growth factor, basic fibroblast growth factor [bFGF]) [37]. They also stimulate the
recruitment of endogenous stem cells by secreting chemokines, such as CXCL12 or CCL5,
and reduce fibrosis by producing keratinocyte growth factor, matrix metalloproteinase
(MMP)-9, bFGF, MMP-2, and hepatocyte growth factor (HGF) [38]. In addition, they inter-
vene in the regulation of apoptosis through the production of HGF, bFGF, and insulin-like
growth factor 1 (IGF1) and through the regulation of oxidative stress by releasing heme
oxygenase-1 or erythropoietin. Finally, they exhibit anti-inflammatory activity by releasing
indoleamine 2,3-dioxygenase (IDO), HLAG5, prostaglandin E2 (PGE2), TNFα-stimulated
gene-6, IL-6, and IL-1 receptor antagonist, among other molecules. The secretion of all
these factors gives these cells an unusual trophic activity [39].

4. Therapeutic Application of MSCs

Stem cell-based regenerative therapy is recognised as a future therapeutic option
for treating many diseases in humans and animals. MSCs are good candidates for cell
therapies because they are easily isolated from various tissues and have extensive and
rapid proliferation [40]. The use of MSCs in regenerative medicine allows considering new
therapies to treat different pathologies in cardiology, immunology, neurology, and many
other diseases [41]. The development and application of cell therapy may eventually be
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used to treat common diseases in the population, such as diabetes and liver cirrhosis [42,43].
Cardiology could also take advantage of the advances possible through stem cell therapy.
In ischemic cardiomyopathies, such as angina, acute coronary syndrome, and infarction,
MSCs have shown a natural capacity to repair the heart muscle [44,45]. The transplantation
of MSCs to the myocardium reduces the lesions caused by ischemia, improves wound
healing, restores tissue contractile function, and increases myocardial flow by optimising
left ventricular function [46,47].

Cell therapy developments are also expected to occur in neurology, with spinal cord
injuries and strokes seeming to benefit from treatment with MSCs [48,49]. The injection of
MSCs enhanced endogenous neuroprotection and brain plasticity through paracrine neu-
rotrophic effects: immunomodulation, angiogenesis, synaptogenesis, oligodendrogenesis,
and neurogenesis. Moreover, the apoptosis of neural cells decreased. Indeed, due to the
antiapoptotic effect of certain factors, such as brain-derived neurotrophic factors, ischemic
tissue was repaired, and neural function was restored [50,51]. In other investigations,
clinical trials of treatments for Parkinson disease and macular degeneration have been
successful owing to the ability of MSCs to increase the level of tyrosine hydroxylase and to
promote the production of dopamine [52,53].

Treating neurological diseases using MSCs relies on the cells’ neuroprotective capacity
after they migrate into damaged brain tissue. Although MSCs benefit rain lesions and
tissue through various trophic factors, such as nerve growth factor (NGF), brain-derived
neurotrophic glial-derived neurotrophic factor (GDNF), vascular endothelial growth factor
(VEGF), and insulin-like growth factor (IGF), they also have immunomodulatory, angio-
genic, and antiapoptotic effects [54,55]. In addition, they stimulate endogenous regeneration
by activating neural progenitor cells quiescent in brain tissue [56,57]. Other medical fields
use MSCs to influence wound healing, angiogenesis, and reepithelialisation [58]. They also
seem to regenerate the function of specific specialised tissues, such as sweat glands [59].
In addition, clinical trials on ischemic tissue regeneration in diabetic patients have shown
revascularisation and healing of damaged tissue after stem cell treatment [60].

The immunomodulatory properties of MSCs arouse great clinical interest. Their ability
to produce trophic, immunomodulatory, and immunosuppressive factors enables their
use to treat graft-versus-host and certain autoimmune diseases [61,62]. In addition, the
application of MSCs in treating type 1 diabetes results in the arrested destruction of β cells,
increasing the differentiation of stem cells into insulin-producing cells and tissue repair by
stabilising the inflammatory response [63]. However, using MSCs in cartilage regeneration
is still challenging because large amounts of cells need to be injected [64]. Recently, MSCs
were used to treat premature ovarian insufficiency. The results were not precise, but the
procedure offers a promising treatment option to improve lipid metabolism and restore
ovarian function by activating the phosphoinositide 3-kinase pathway, promoting the level
of free amino acids, and reducing the concentration of monosaccharides [65]. MSCs-derived
secretomes have been used in different clinical trials and shown to produce the same or
even enhanced therapeutic effect compared with MSCs [66]. Moreover, MSC-derived
secretomes have been shown to display a dual function in tumor promotion and tumor
suppression [67].

5. Veterinary Use of Mscs in Companion Animals
5.1. Canine MSCs
5.1.1. Sources and Characteristics

Canine MSCs (cMSCs) were initially obtained from adipose tissue [68]. They have
since been isolated from allogenic and autologous sources, including bone marrow mus-
cle and periosteum [69], umbilical cord blood [70], Wharton’s jelly [71], umbilical cord
tissue [72] amniotic membrane [73], amniotic fluid [74], the limbal epithelium [75], en-
dometrium [76], and the dental pulp [77]. In addition, cMSCs have also been harvested
from olfactory epithelium [78], periodontal ligament [79], synovium [80], placenta [81],
peripheral blood [82], and ovary [83]. cMSCs obtained from different sources are plastic
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adherent with a spindle-shaped morphology. Some studies have shown that the morphol-
ogy of cMSC varies from more cuboid to very thin with cytoplasmic extension [84]. The
cells are positive for CD90, CD105, CD44, and CD73 markers, but they lack the expression
of the hematopoietic cell surface markers CD34, CD45, CD146, and CD11b. In addition,
some studies have shown the absence of other markers, such as CD14, D11b, CD19, CD29α,
CD45, CD34, and HLA-DR [85]. The different sources and genetic differences between
various breeds may cause variation in their biological characteristics; dissimilarities in
multi-lineage differentiation and proliferation level can define their clinical uses [86].

5.1.2. Canine MSC Therapy

Dogs have been extensively studied in cartilage repair work because, like humans,
dogs lack an intrinsic repairability of cartilage and can experience the same cartilage
diseases as humans, including osteoarthritis and osteochondritis dissecans [87,88].

Osteoarthritis (OA)

Canine osteoarthritis (OA) is a degenerative disease of joint tissues that leads to the
loss of joint cartilage and the release of inflammatory and regulating cytokines, causing
pain. The cartilage’s ability to heal is inadequate because of its avascular nature. After a
lesion, the fibrous tissue is formed with various functional properties of the native hyaline
cartilage, promoting joint degeneration [89,90]. The OA pathophysiology is multifactorial,
with a robust inflammatory component, and it is frequently secondary to anatomical
anomalies or injuries, causing joint instability. It is widespread in large animals but can
also affect dogs from all breeds; there is no cure for OA, and the treatment routine focuses
on pain reduction and symptom management [89,91]. Conventional treatment is based on
diet, long-term nonsteroidal anti-inflammatory drugs, weight management, and dietary
supplements. More therapies have been used and studied, such as acupuncture and
shockwave therapy. More recently, MSCs have been used as a promising tool for treating
different OA cases [91,92]. Studies evaluated the therapy improvement of hip joint OA
using the subjective method, including a range of motion scores, pain, and lameness [93,94].
Black et al. [94] conducted a study on 21 dogs with chronic hip joint OA: the dogs were
treated with 4.2–5 × 106 intra-articular autologous ASCs for 6 months, and the study
results showed a significantly improved score for pain, lameness, and range of motion
compared with the control group. Marx et al. [93] evaluated the effect of allogeneic ASCs,
and autologous stromal vascular fraction injected into acupuncture in 6 dogs; after 60 days,
all 5 dogs showed an improvement in lameness, range of motion, and pain manipulation.
More studies carried out by Viral et al. [95,96] used the objective method to analyse the
approach using a force platform to demonstrate the effectiveness of a single AI injection of
ASCs. The first research revealed how the effect of the combination of ASCs and PRGF was
extended over 6 months [95]. In the second study, the same team showed that using ASCs
alone improves the dogs’ conditions after the first month of the treatment with a reduction
in lameness and pain; however, this effect gradually eased between the first and the third
month [96]. In the third study, Vilar and his team [97] used the force platform to compare
the pain scales for the same animal treated with ASCs six months after therapy. The results
showed that using pain assessment scales to measure lameness associated with OA did not
reveal high accuracy compared with the quantitative force platform gait approach [97].

Numerous studies have shown notable results using the intra-articular administration
of ASCs for canine elbow OA therapy, with improved pain, lameness, amplitude of motion,
and functional capacity [93,98,99]. Éva Kriston-Pál et al. [98] used MSCs resuspended in
0.5% hyaluronic acid to treat dogs suffering from elbow dysplasia and OA; the results
reported a significant improvement demonstrated by the degree of lameness during the
follow-up period of one year. Controlled arthroscopy also showed that cartilage had com-
pletely regenerated in one dog. In a more recent study, Olsen et al. [99] used IV injections of
allogeneic ASCs (1–2 × 106 cells/kg body weight) to treat 13 dogs with elbow OA 2 weeks
apart. No acute adverse effects were observed, and a significant improvement in clinical
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signs and the owner’s perception was noted. However, synovial fluid OA biomarkers
did not change after MSCs administration. Despite subjective outcomes showing good
enhancements, such as the dog’s clinical signs, objective outcome measures did not con-
firm similar results, such as reducing the OA biomarkers measurement in synovial fluid.
Larger sample sizes and CGs are needed to interpret these findings [99]. According to
previous studies, treating OA using MSCs in combination or alone improves the clinical
signs, reducing lameness and providing remarkable recovery after the last limited sports
activity [100–103].

Osteochondritis

Dissecting osteochondritis is common in large dogs of predisposed breeds before the
age of one year. The joints mainly affected are the shoulders, elbows, and ankles (tarsus).
The treatment uses arthroscopically guided excision of free cartilage fragments in the joint
combined with stem cells and plasma enriched with growth factors [101]. Robert Harman
et al. (2016) carried out a study of a treatment for osteoarthritis using MSCs obtained from
adipose tissue. In this trial, 43 dogs in the treatment group received a dose of 12 × 106

cryopreserved allogeneic MSCs intra-articularly. The study measured the effects of MSCs
on pain during handling and assessed the dogs’ abilities to perform daily activities for two
months [90]. No severe side effects were associated with the treatment in this study, and
there was a notable reduction in pain and improved functional abilities. Intra-articular
injection of MSCs has also proved to be a promising technique [102].

Tendonitis and Ligaments Rupture

In dogs, tendonitis is another frequently diagnosed disorder that can cause significant
locomotor disorders. In addition to tendonitis, ruptures and lacerations are other common
tendon disorders in dogs [103]. These disorders rarely resolve spontaneously and invariably
require treatment followed by physiotherapy; therefore, an effective treatment that heals
the scar tissue as closely as possible to resemble the healthy tendon properties is needed.
Autologous adipose MSCs used in the tendon treatment modulate the tendon’s post-repair
inflammatory response by increasing prostaglandin reductase1, M2 macrophage, and
proteins involved in tendon formation. Moreover, the anti-inflammatory effect of MSCs is
thought to cause a decrease in collagen fibre alteration [95,104]. Currently, MSC therapy is
an exciting prospect. Studies have demonstrated a histologically significant improvement
in tendon healing following treatment with adipose-derived progenitor cells (ADPC) or
bone marrow aspirate concentrate (BMAC) and platelet-rich plasma (PRP) combination
on partial cranial cruciate ligament rupture CCL. This investigation reviewed 36 medical
records of client-owned dogs diagnosed with an early partial tear of the craniomedial band
of the CCL treated with BMAC–PRP or ADPC–PRP from 2010 to 2015. The data collected
are mainly the results of the diagnostic arthroscopy on days 0 and 90, the physical and
orthopaedic examination, the medical history, the x-rays, and the objective analysis of the
temporospatial gait [105]. In another study, dogs with unilateral cranial cruciate ligament
rupture confirmed by arthroscopy were treated as follows: The first group received an
intra-articular injection of allogeneic neonatal MSCs after tibial plateau levelling osteotomy,
followed by a placebo for one month. The second group received the same concentration of
MSCs after tibial plateau levelling osteotomy, followed by nonsteroidal anti-inflammatory
drugs (NSAIDs). After one month, the results showed tendon healing in the group treated
with MSCs. The same result was recorded in the other group treated with nonsteroidal
anti-inflammatory drugs, and insignificant differences between the two groups in gait
evaluation after three months were reported [106].

Other studies have explored the use of MSCs to treat systemic or local inflamma-
tory pathologies and autoimmune diseases in dogs [107]. In addition, the canine model
offers certain advantages, such as the possibility of conducting long studies involving
physiotherapy or exercise protocols. Finally, dogs are considered model animals for human
research [108].
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5.2. Feline MSCs
5.2.1. Sources and Characteristics

MSCs have been isolated from different tissues in cats. The initial isolation of MSCs
from bone marrow and characterisation of the cells were reported in 2002, followed by iso-
lation from fetal fluid, fat, peripheral blood, amniotic membrane, umbilical cord blood [7],
and from different parts of the umbilical cord tissue [109]. As with all MSCs, feline MSCs
(fMSCs) have the capacity for self-renewal. They also display a typical fibroblast-like ap-
pearance and plastic adherence, express numerous surface markers (CD90, CD44, CD105),
and are negative for leukocyte markers (CD4, CD18) and histocompatibility complex
(MHC) II [110]. These characteristics can be altered after extended culture. Lee et al. [111]
showed that proliferation and the expression of surface markers of adipose-derived fMSCs
decreased after multiple passages; for this reason, their use in cell therapy will be more
effective during the early passages. fMSCs also have the potential to differentiate into
adipogenic, osteogenic, and chondrogenic cells [112].

MSCs can modulate both adaptive and innate immune systems: T lymphocytes are
the primary mediators of the adaptive immune response, and fMSCs have the same im-
munomodulatory gene expression and response to inflammatory cytokines as human
MSCs. The secretion of IFN-γ and TNF-α stimulate MSCs, which attracts T lymphocytes
by chemotaxis for cell contact; however, MSCs are poor immunogenic cells because they do
not express HLA class II molecules HLA-DR or the costimulatory molecules CD40, CD80,
and CD86 [113–115]. As a result, they escape recognition by CD4+ T lymphocytes and
cause them to become energy sources [115]. As a result, they escape recognition by CD4+ T
lymphocytes and cause them to become energy sources [116]. These molecules inhibit the
proliferation of T lymphocytes and the activation of T lymphocytes by antigen-presenting
cells, and they induce the differentiation and survival of regulatory T lymphocytes. In ad-
dition, the expression of IDO enzyme by fMSCs inhibits the proliferation of T lymphocytes
by reducing the amount of tryptophan in the surrounding environment, an amino acid
essential for cell multiplication [117].

In later passages, FMSCs develop giant foamy multinucleated cells, causing prolifera-
tion arrest and syncytial cell formation. These cytopathic effects are caused by infection
with the feline foamy virus (FeFV), a very common, asymptomatic retrovirus in cats. The
impacts of FeFV infection on fMSC function make their use in therapy impossible [118–124].
However, a recent study conducted by Boaz et al. shows that treating fMSCs infected by
FeFV using an antiretroviral drug, tenofovir, in early passages effectively prevents the
harmful effects of the infection and supports in vitro expansion [119].

Current and potential clinical applications of mesenchymal stem cell therapy in cats
are explored in several diseases. Based on the immunomodulatory properties of feline
stem cells, clinical trials show interest in this new therapeutic strategy for treating illnesses
such as gingivostomatitis, chronic inflammatory bowel diseases, asthma, and even kidney
failure [120].

5.2.2. Feline MSCs and Their Clinical Use

Current and potential clinical applications of MSC therapy in cats have been investi-
gated in several diseases. Based on the immunomodulatory properties of feline stem cells,
clinical trials have been conducted for the treatment of disorders such as gingivostomatitis,
chronic inflammatory bowel diseases, asthma, and even kidney failure [121].

Feline Asthma

Cats with asthma have a progressive decline in respiratory function linked to structural
remodelling of the airways, characterised by subepithelial fibrosis and bronchial smooth
muscle hypertrophy. These structural changes result from communication between cells of
different bronchial structures, including fibroblasts, epithelial cells, smooth muscle cells,
and immune cells present within the bronchial mucosa [122]. Current therapies for asthma
are mainly based on steroidal anti-inflammatory drugs, but many side effects appear over
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time. MSCs have been used to treat cats with chronic, acute, and allergic asthma. Cats
have been treated in different ways; in one study, adipose-derived MSCs intravenous
injections at a dose (0.36–2.5 × 107 MSCs/infusion) were administered every two months
over one year. Results show that MSCs positively affect airway remodelling at eight months,
diminished airway hyperresponsiveness, and decreased airway eosinophilia compared
with placebo, but no effect on airway inflammation [123]. In the second study, serial
intravenous infusions of allogeneic, adipose-derived MSCs were administered at different
doses (2 × 106, 4 × 106, 4.7 × 106, 1 × 107, and 1 × 107); after 133 days, treatment of allergic
asthma experimentally induced by allogeneic MSCs resulted in significant improvement in
airway hyperresponsiveness, airway inflammation, and airway remodelling [124]. These
two studies showed that MSCs positively affected airway remodelling, diminished airway
hyperresponsiveness, and decreased airway eosinophilia compared with placebo but had
no effect on airway inflammation and improvement [123,124].

Feline Kidney Disease

The effectiveness and safety of MSC administration were investigated in the treatment
of cats with chronic kidney disease (CKD), using a single unilateral intrarenal injection of
autologous adipose tissue-derived or bone marrow-derived MSC (bmBM MSC or aMSC)
via ultrasound guidance. A total of 6 cats were used for this study, including 2 healthy
1.5-year-old cats and 4 cats with CKD whose ages varied between 6 and 13 years. Intrarenal
injection resulted in a mild decrease in serum creatinine concentration and a modest im-
provement in glomerular filtration rate without inducing adverse effects [125–131]. In
another investigation, cats with naturally occurring CKD were treated with feline amniotic
membrane-derived allogenic MSCs via internal and intravenous injection [127]. Unfor-
tunately, the internal injection of aMSCs was unsuccessful because of stress, sedation,
bleeding, and anaesthesia complications. In contrast, data obtained from intravenous ad-
ministration revealed significant improvement in proteinuria, decreased serum creatinine,
and mild improvements in urine-specific gravity [128].

In another research study, the treatment of acute kidney injury (AKI) in an ischemic
kidney model in adult research, cats underwent unilateral renal ischemia for 60 min
with fibroblasts (five cats), aMSCs (five cats), or bm-MSCs (five cats). Three cats that
had undergone ischemia previously were used as a control. The results of the study
revealed no AKI influence or smooth muscle actin staining [129]. Thus, despite decreased
serum creatinine concentrations, using MSCs in treating CKD did not lead to a clinically
meaningful improvement in renal function. Furthermore, none of the tests in cats with
CKD have reproduced the positive results obtained in rodents [129].

Feline Chronic Gingivostomatitis

Feline chronic gingivostomatitis (FCGS) results from an inadequate immune response
of the cat to different antigenic stimulations. The disorder affects the gums and other
parts of the oral cavity, and its treatment is long and complex [130]. Nevertheless, the
ability of MSCs to downregulate the activation of T lymphocytes makes their use in
the treatment of chronic stomatitis in feline medicine remarkable [131] Boaz Arzi et al.
applied allogenic aMSCs in clinical cases of FCGS: FCGS cats refractory to full-mouth
tooth extraction were enrolled [132,133]. In each trial, 7 FCGS cats received 2 intravenous
injections of 2 × 107 aMSCs 3–4 weeks apart. In the first experiment, the seven cats
received autologous aMSCs; in the second experiment, the seven cats received unmatched,
allogeneic aMSCs from SPF donor cats. The results demonstrated that cats treated with
allogenic and autologous aMSCs recovered from their clinical condition, with the clinical
cure being shown by the histopathology resolution of B- and T-cell inflammation. Moreover,
neutrophil counts, normalisation of the CD4/CD8 ratio, and numbers of circulating CD8+
T cells were decreased, while serum IL-6 and TNF-α concentrations were temporarily
increased [132–138].
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In a different experiment, allogenic aMSCs were used to treat cats with chronic clinical
enteropathy, and the results showed no side effects, with a significant improvement in
clinical signs [132].

Inflammatory Bowel Disease

Feline inflammatory bowel disease (IBD) is a condition in which a cat’s gastrointestinal
(GI) tract becomes chronically irritated and inflamed; the possible causes can include
bacterial or parasitic infection, intolerance, or allergy to a specific protein in the diet [7,134].
To date, there is no single best treatment for IBD, so veterinarians may need to try several
combinations of medications or diet to determine the best therapy [135]. For this reason,
alternative approaches became necessary; applying MSCs as an alternative treatment for
IBD is still a very recent concept in veterinary medicine [120]. Tracy et al. [136] conducted a
clinical trial involving seven cats with diarrhea for at least three months. They received
two IV injections of 2 × 106 cells/kg from cryopreserved feline ASCs, while four cats with
a similar clinical condition received a saline placebo. Clinical signs improved in five out of
seven cats treated with stem cells after one to two months, unlike the placebo group, which
did not show any progress. With this trial, it is possible to conclude that MSC therapy was
well tolerated and potentially effective in treating feline chronic enteropathy. However,
these preliminary results require a significant follow-up study.

In recent research performed by Tracy et al. [137] fMSCs were used as a treatment for
IBD after the failed diet trial and compared with prednisolone treatment. The endoscopic
biopsies confirmed the histopathologic diagnosis of IBD, and the cats were randomly
assigned to either the prednisolone or fMSC groups.

In total, 12 cats were treated, 6 cats in each group. The cats that received fMSCs were
between 4.5 to 13 years old and included 3 neutered males and 3 spayed females with
weights varying between 4 and 5.9 kg; cats received IV injections of 2 × 106 cells/kg of
freshly allogenic adipose-derived MSCs separated by 2 weeks. The prednisolone group
included spayed females with a mean age of 8.3 years and a mean weight of 3.6 kg. They
received a 1–2 mg/kg PO q24h. In each group, one cat failed the treatment at the second-
month recheck, and five completed the six months study with no changes in diet and
medications [137]. The results showed that freshly allogenic adipose-derived MSCs were
safe and easily administrated in the cat with IBD without any side effects; the response to
therapy was similar between the group that received MSC infusions and the group that
received standard prednisolone therapy. However, a more extensive study is needed to
confirm the efficacy and duration of the effect [137].

The studies were carried out on a small number of treated animals, making the
published results interesting and promising. More studies would certainly be required to
confirm its beneficial influence. Other diseases that could benefit from this new therapeutic
strategy in veterinary medicine remain to be investigated.

6. Conclusions

Along with a scientific interest in regenerative medicine, interest in MSCs has grown
over time. Many studies have made it possible to characterise these cells and demonstrate
their regenerative potential, and it appears that their use in new therapeutic approaches
is inevitable. Indeed, two essential properties of MSCs make them critical in regenerative
medicine: their ability to proliferate without losing their undifferentiated character and
ability to differentiate into specialised cells. Other properties found more recently, such as
their abilities to modulate the immune system and to secrete molecules influencing their
environment, make them even more attractive. The evolution of our understanding of
MSCs and their use will enable the development of new therapeutic strategies, particularly
in veterinary regenerative medicine. In addition, MSC therapy is a promising option for
treating several diseases.

Nevertheless, many factors remain to be investigated regarding the protocols of use,
the most suitable source of stem cells, the optimal route of administration, and the impact
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of the donor’s status on stem cell function. For that reason, when selecting a donor for
cell-based products in veterinary clinical trials, screening them for infectious diseases and
other risk factors is crucial to prevent the transmission of disease agents and ensure the
safety of the animal subjects involved in the trial. Therefore, besides the quality-controlled
cells, it is essential to clearly understand their origin, storage conditions, and product
composition. In addition, it is also necessary to demonstrate that cellular function and
integrity have been preserved throughout the process and prove that the cells are free of
contamination from viruses, bacteria, fungi, mycoplasma, and endotoxins.

Conducting long-term safety evaluations to ensure no adverse effects is highly rec-
ommended. If any adverse events occur after stem cell intervention, reporting them and,
more importantly, considering the potential risk factors, such as toxicity, tumorigenicity,
and immune reactions, is essential. Moreover, there are regulations and guidelines for
using stem cell-based products in veterinary practice made by the European Medicine
Agency (EMA), the United States Food and Drug Administration (FDA), and the Animal
and Plant Quarantine Agency (APQA) of Korea [138–141] to ensure the safety assessment
of cell-based products for animal use.
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66. Műzes, G.; Sipos, F. Mesenchymal Stem Cell-Derived Secretome: A Potential Therapeutic Option for Autoimmune and Immune-
Mediated Inflammatory Diseases. Cells 2022, 11, 2300. [CrossRef]

67. Muralikumar, M.; Manoj Jain, S.; Ganesan, H.; Duttaroy, A.K.; Pathak, S.; Banerjee, A. Current Understanding of the Mesenchymal
Stem Cell-Derived Exosomes in Cancer and Aging. Biotechnol. Rep. 2021, 31, e00658. [CrossRef]

68. Martinello, T.; Bronzini, I.; Maccatrozzo, L.; Mollo, A.; Sampaolesi, M.; Mascarello, F.; Decaminada, M.; Patruno, M. Canine
Adipose-Derived-Mesenchymal Stem Cells Do Not Lose Stem Features after a Long-Term Cryopreservation. Res. Vet. Sci. 2011,
91, 18–24. [CrossRef]

69. Kisiel, A.H.; McDuffee, L.A.; Masaoud, E.; Bailey, T.R.; Esparza Gonzalez, B.P.; Nino-Fong, R. Isolation, Characterization, and in
Vitro Proliferation of Canine Mesenchymal Stem Cells Derived from Bone Marrow, Adipose Tissue, Muscle, and Periosteum.
Am. J. Vet. Res. 2012, 73, 1305–1317. [CrossRef]

70. Sultana, T.; Lee, S.; Yoon, H.-Y.; Lee, J.I. Current Status of Canine Umbilical Cord Blood-Derived Mesenchymal Stem Cells in
Veterinary Medicine. Stem Cells Int. 2018, 2018, 8329174. [CrossRef]

71. Seo, M.-S.; Park, S.-B.; Kang, K.-S. Isolation and Characterization of Canine Wharton’s Jelly-Derived Mesenchymal Stem Cells.
Cell Transplant. 2012, 21, 1493–1502. [CrossRef]

72. Kumar, K.; Agarwal, P.; Das, K.; Mili, B.; Madhusoodan, A.; Kumar, A.; Bag, S. Isolation and Characterization of Mesenchymal
Stem Cells from Caprine Umbilical Cord Tissue Matrix. Tissue Cell 2016, 48, 653–658. [CrossRef] [PubMed]

73. Park, S.-B.; Seo, M.-S.; Kim, H.-S.; Kang, K.-S. Isolation and Characterization of Canine Amniotic Membrane-Derived Multipotent
Stem Cells. PLoS ONE 2012, 7, e44693. [CrossRef] [PubMed]

74. Choi, S.-A.; Choi, H.-S.; Kim, K.J.; Lee, D.-S.; Lee, J.H.; Park, J.Y.; Kim, E.Y.; Li, X.; Oh, H.-Y.; Lee, D.-S.; et al. Isolation of Canine
Mesenchymal Stem Cells from Amniotic Fluid and Differentiation into Hepatocyte-like Cells. Vitr. Cell Dev. Biol. Anim. 2013, 49,
42–51. [CrossRef]

75. Villatoro, A.J.; Alcoholado, C.; Martín-Astorga, M.d.C.; Rico, G.; Fernández, V.; Becerra, J. Characterization of the Secretory Profile
and Exosomes of Limbal Stem Cells in the Canine Species. PLoS ONE 2020, 15, e0244327. [CrossRef]

76. de Cesaris, V.; Grolli, S.; Bresciani, C.; Conti, V.; Basini, G.; Parmigiani, E.; Bigliardi, E. Isolation, Proliferation and Characterization
of Endometrial Canine Stem Cells. Reprod. Domest. Anim. 2017, 52, 235–242. [CrossRef]

77. Dissanayaka, W.L.; Zhu, X.; Zhang, C.; Jin, L. Characterization of Dental Pulp Stem Cells Isolated from Canine Premolars. J. Endod.
2011, 37, 1074–1080. [CrossRef] [PubMed]

78. Altunbaş, K.; Yaprakçi, M.V.; Çelik, S. Köpek Olfaktorik Mukozasindan Olfaktorik Kök Hücrelerin Izolasyonu ve Karakterizasy-
onu. Kafkas Univ. Vet. Fak. Derg. 2015, 7, 112–123. [CrossRef]

79. Wang, W.-J.; Zhao, Y.-M.; Lin, B.-C.; Yang, J.; Ge, L.-H. Identification of Multipotent Stem Cells from Adult Dog Periodontal
Ligament. Eur. J. Oral Sci. 2012, 120, 303–310. [CrossRef]

80. Sasaki, A.; Mizuno, M.; Ozeki, N.; Katano, H.; Otabe, K.; Tsuji, K.; Koga, H.; Mochizuki, M.; Sekiya, I. Canine Mesenchymal Stem
Cells from Synovium Have a Higher Chondrogenic Potential than Those from Infrapatellar Fat Pad, Adipose Tissue, and Bone
Marrow. PLoS ONE 2018, 13, e0202922. [CrossRef]

81. Saulnier, N.; Loriau, J.; Febre, M.; Robert, C.; Rakic, R.; Bonte, T.; Buff, S.; Maddens, S. Canine Placenta: A Promising Potential
Source of Highly Proliferative and Immunomodulatory Mesenchymal Stromal Cells? Vet. Immunol. Immunopathol. 2016, 171,
47–55. [CrossRef]

82. Kadiyala, S. Culture Expanded Canine Mesenchymal Stem Cells Possess Osteochondrogenic Potential in Vivo and in Vitro.
Cell Transplant. 1997, 6, 125–134. [CrossRef] [PubMed]

83. Hill, A.B.T.; Hill, J.E.B.T.; Bressan, F.F.; Miglino, M.A.; Garcia, J.M. Derivation and Differentiation of Canine Ovarian Mesenchymal
Stem Cells. J. Vis. Exp. 2018, 142, e58163. [CrossRef] [PubMed]

84. Csaki, C.; Matis, U.; Mobasheri, A.; Ye, H.; Shakibaei, M. Chondrogenesis, Osteogenesis and Adipogenesis of Canine Mesenchymal
Stem Cells: A Biochemical, Morphological and Ultrastructural Study. Histochem. Cell Biol. 2007, 128, 507–520. [CrossRef]

85. Nantavisai, S.; Egusa, H.; Osathanon, T.; Sawangmake, C. Mesenchymal Stem Cell-Based Bone Tissue Engineering for Veterinary
Practice. Heliyon 2019, 5, e02808. [CrossRef] [PubMed]

86. Vina, E.R.; Kwoh, C.K. Epidemiology of Osteoarthritis: Literature Update. Curr. Opin. Rheumatol. 2018, 30, 160–167. [CrossRef]
[PubMed]

87. Flanigan, D.C.; Harris, J.D.; Trinh, T.Q.; Siston, R.A.; Brophy, R.H. Prevalence of Chondral Defects in Athletes’ Knees. Med. Sci.
Sports Exerc. 2010, 42, 1795–1801. [CrossRef]

88. Kalamegam, G.; Memic, A.; Budd, E.; Abbas, M.; Mobasheri, A. A Comprehensive Review of Stem Cells for Cartilage Regeneration
in Osteoarthritis. In Cell Biology and Translational Medicine, Volume 2: Approaches for Diverse Diseases and Conditions; Springer:
Berlin/Heidelberg, Germany, 2018; pp. 23–36.

50

https://doi.org/10.21037/sci.2019.08.11
https://www.ncbi.nlm.nih.gov/pubmed/31620481
https://doi.org/10.1177/2041731420943839
https://www.ncbi.nlm.nih.gov/pubmed/32922718
https://doi.org/10.1186/s13287-020-01972-5
https://www.ncbi.nlm.nih.gov/pubmed/33148334
https://doi.org/10.3390/cells11152300
https://doi.org/10.1016/j.btre.2021.e00658
https://doi.org/10.1016/j.rvsc.2010.07.024
https://doi.org/10.2460/ajvr.73.8.1305
https://doi.org/10.1155/2018/8329174
https://doi.org/10.3727/096368912X647207
https://doi.org/10.1016/j.tice.2016.06.004
https://www.ncbi.nlm.nih.gov/pubmed/27423985
https://doi.org/10.1371/journal.pone.0044693
https://www.ncbi.nlm.nih.gov/pubmed/23024756
https://doi.org/10.1007/s11626-012-9569-x
https://doi.org/10.1371/journal.pone.0244327
https://doi.org/10.1111/rda.12885
https://doi.org/10.1016/j.joen.2011.04.004
https://www.ncbi.nlm.nih.gov/pubmed/21763897
https://doi.org/10.9775/kvfd.2015.14277
https://doi.org/10.1111/j.1600-0722.2012.00975.x
https://doi.org/10.1371/journal.pone.0202922
https://doi.org/10.1016/j.vetimm.2016.02.005
https://doi.org/10.1177/096368979700600206
https://www.ncbi.nlm.nih.gov/pubmed/9142444
https://doi.org/10.3791/58163
https://www.ncbi.nlm.nih.gov/pubmed/30596383
https://doi.org/10.1007/s00418-007-0337-z
https://doi.org/10.1016/j.heliyon.2019.e02808
https://www.ncbi.nlm.nih.gov/pubmed/31844733
https://doi.org/10.1097/BOR.0000000000000479
https://www.ncbi.nlm.nih.gov/pubmed/29227353
https://doi.org/10.1249/MSS.0b013e3181d9eea0


Animals 2023, 13, 1903 14 of 16

89. Torres-Torrillas, M.; Rubio, M.; Damia, E.; Cuervo, B.; del Romero, A.; Peláez, P.; Chicharro, D.; Miguel, L.; Sopena, J.J. Adipose-
Derived Mesenchymal Stem Cells: A Promising Tool in the Treatment of Musculoskeletal Diseases. Int. J. Mol. Sci. 2019, 20, 3105.
[CrossRef]

90. Harman, R.; Carlson, K.; Gaynor, J.; Gustafson, S.; Dhupa, S.; Clement, K.; Hoelzler, M.; McCarthy, T.; Schwartz, P.; Adams, C. A
Prospective, Randomized, Masked, and Placebo-Controlled Efficacy Study of Intraarticular Allogeneic Adipose Stem Cells for the
Treatment of Osteoarthritis in Dogs. Front. Vet. Sci. 2016, 3, 81. [CrossRef]

91. Dias, I.; Cardoso, D.; Soares, C.; Barros, L.; Viegas, C.; Carvalho, P.; Dias, I. Clinical Application of Mesenchymal Stem Cells
Therapy in Musculoskeletal Injuries in Dogs—A Review of the Scientific Literature. Open Vet. J. 2021, 11, 188. [CrossRef]

92. Black, L.L.; Gaynor, J.; Adams, C.; Dhupa, S.; Sams, A.E.; Taylor, R.; Harman, S.; Gingerich, D.A.; Harman, R. Effect of Intraarticular
Injection of Autologous Adipose-Derived Mesenchymal Stem and Regenerative Cells on Clinical Signs of Chronic Osteoarthritis
of the Elbow Joint in Dogs. Vet. Ther. 2008, 9, 192–200.

93. Marx, C.; Silveira, M.D.; Selbach, I.; da Silva, A.S.; Braga, L.M.G.d.M.; Camassola, M.; Nardi, N.B. Acupoint Injection of
Autologous Stromal Vascular Fraction and Allogeneic Adipose-Derived Stem Cells to Treat Hip Dysplasia in Dogs. Stem Cells Int.
2014, 2014, 391274. [CrossRef] [PubMed]

94. Black, L.L.; Gaynor, J.; Gahring, D.; Adams, C.; Aron, D.; Harman, S.; Gingerich, D.A.; Harman, R. Effect of Adipose-Derived
Mesenchymal Stem and Regenerative Cells on Lameness in Dogs with Chronic Osteoarthritis of the Coxofemoral Joints: A
Randomized, Double-Blinded, Multicenter, Controlled Trial. Vet. Ther. 2007, 8, 272–284. [PubMed]

95. Vilar, J.M.; Morales, M.; Santana, A.; Spinella, G.; Rubio, M.; Cuervo, B.; Cugat, R.; Carrillo, J.M. Controlled, Blinded Force
Platform Analysis of the Effect of Intraarticular Injection of Autologous Adipose-Derived Mesenchymal Stem Cells Associated to
PRGF-Endoret in Osteoarthritic Dogs. BMC Vet. Res. 2013, 9, 131. [CrossRef] [PubMed]

96. Vilar, J.M.; Batista, M.; Morales, M.; Santana, A.; Cuervo, B.; Rubio, M.; Cugat, R.; Sopena, J.; Carrillo, J.M. Assessment of the
Effect of Intraarticular Injection of Autologous Adipose-Derived Mesenchymal Stem Cells in Osteoarthritic Dogs Using a Double
Blinded Force Platform Analysis. BMC Vet. Res. 2014, 10, 143. [CrossRef] [PubMed]

97. Vilar, J.M.; Cuervo, B.; Rubio, M.; Sopena, J.; Domínguez, J.M.; Santana, A.; Carrillo, J.M. Effect of Intraarticular Inoculation of
Mesenchymal Stem Cells in Dogs with Hip Osteoarthritis by Means of Objective Force Platform Gait Analysis: Concordance with
Numeric Subjective Scoring Scales. BMC Vet. Res. 2016, 12, 223. [CrossRef]

98. Kriston-Pál, É.; Czibula, Á.; Gyuris, Z.; Balka, G.; Seregi, A.; Sükösd, F.; Süth, M.; Kiss-Tóth, E.; Haracska, L.; Uher, F.; et al.
Characterization and Therapeutic Application of Canine Adipose Mesenchymal Stem Cells to Treat Elbow Osteoarthritis. Can. J.
Vet. Res. 2017, 81, 73–78.

99. Guercio, A.; Di Marco, P.; Casella, S.; Cannella, V.; Russotto, L.; Purpari, G.; Di Bella, S.; Piccione, G. Production of Canine
Mesenchymal Stem Cells from Adipose Tissue and Their Application in Dogs with Chronic Osteoarthritis of the Humeroradial
Joints. Cell Biol. Int. 2012, 36, 189–194. [CrossRef]

100. Olsen, A.; Johnson, V.; Webb, T.; Santangelo, K.; Dow, S.; Duerr, F. Evaluation of Intravenously Delivered Allogeneic Mesenchymal
Stem Cells for Treatment of Elbow Osteoarthritis in Dogs: A Pilot Study. Vet. Comp. Orthop. Traumatol. 2019, 32, 173–181.
[CrossRef]

101. Cuervo, B.; Rubio, M.; Sopena, J.; Dominguez, J.; Vilar, J.; Morales, M.; Cugat, R.; Carrillo, J. Hip Osteoarthritis in Dogs: A
Randomized Study Using Mesenchymal Stem Cells from Adipose Tissue and Plasma Rich in Growth Factors. Int. J. Mol. Sci.
2014, 15, 13437–13460. [CrossRef]

102. Craig, L.E.; Reed, A. Age-Associated Cartilage Degeneration of the Canine Humeral Head. Vet. Pathol. 2013, 50, 264–268.
[CrossRef]

103. Kennedy, K.C.; Perry, J.A.; Duncan, C.G.; Duerr, F.M. Long Digital Extensor Tendon Mineralization and Cranial Cruciate Ligament
Rupture in a Dog. Vet. Surg. 2014, 43, 593–597. [CrossRef] [PubMed]

104. de Bakker, E.; van Ryssen, B.; de Schauwer, C.; Meyer, E. Canine Mesenchymal Stem Cells: State of the Art, Perspectives as
Therapy for Dogs and as a Model for Man. Vet. Q. 2013, 33, 225–233. [CrossRef] [PubMed]

105. Canapp, S.O.; Leasure, C.S.; Cox, C.; Ibrahim, V.; Carr, B.J. Partial Cranial Cruciate Ligament Tears Treated with Stem Cell and
Platelet-Rich Plasma Combination Therapy in 36 Dogs: A Retrospective Study. Front. Vet. Sci. 2016, 3, 112. [CrossRef]

106. Taroni, M.; Cabon, Q.; Fèbre, M.; Cachon, T.; Saulnier, N.; Carozzo, C.; Maddens, S.; Labadie, F.; Robert, C.; Viguier, E. Evaluation
of the Effect of a Single Intra-Articular Injection of Allogeneic Neonatal Mesenchymal Stromal Cells Compared to Oral Non-
Steroidal Anti-Inflammatory Treatment on the Postoperative Musculoskeletal Status and Gait of Dogs over a 6-Month Period
after Tibial Plateau Leveling Osteotomy: A Pilot Study. Front. Vet. Sci. 2017, 4, 83. [CrossRef]

107. Tyndall, A.; Uccelli, A. Multipotent Mesenchymal Stromal Cells for Autoimmune Diseases: Teaching New Dogs Old Tricks. Bone
Marrow Transplant. 2009, 43, 821–828. [CrossRef]

108. Veenman, P. Animal Physiotherapy. J. Bodyw. Mov. Ther. 2006, 10, 317–327. [CrossRef]
109. Baouche, M.; Krawczenko, A.; Paprocka, M.; Klimczak, A.; Mermillod, P.; Locatelli, Y.; Ochota, M.; Niżański, W. Feline Umbilical
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CHAPTER 5 

MESENCHYMAL STEM CELLS: 

ISOLATION AND IN VITRO CHARACTERISATION 

 FROM DISTINCT PARTS OF THE UMBILICAL CORD. 
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In this study, we decided to obtain MSCs from feline umbilical cords that are considered surgical 

waste products if obtained during Caesarean section, or waste biological material when obtained 

during natural delivery. Thus its use as the source of MSCs would not raise specific ethical 

questions. That was also supported by the local legislation and institutional requirements 

Decision No. 004/2021. Moreover, umbilical cords are easy to obtain in non-invasive methods 

both during surgery and parturition. The feline umbilical cord (UC) is a complex organ. 

Therefore, we decided to evaluate for the first time in cats whether it is possible to obtain MSCs 

from the whole cord, as well as from its parts (separately from Wharton's jelly and vessels). 

Furthermore, we evaluated whether the cells collected from the feline umbilical cord tissues 

would show MSCs characteristics. 

This study aimed to isolate, characterise and compare the mesenchymal stem cells from different 

anatomical regions of the feline umbilical cord, including vessels, Wharton's jelly and the whole 

umbilical cord. The aim was to be able to indicate the best part of umbilical cords for MSCs 

isolation in cats. The detailed results were published in the Theriogenology journal under the title 

of Feline umbilical cord mesenchymal stem cells: Isolation and in vitro characterisation 

from distinct parts of the umbilical cord. Theriogenology (2023) 201:116–25. 

doi:10.1016/j.theriogenology.2022.11.049. 

As it was mentioned in the Materials and Methods chapter 4, 36 umbilical cords were collected 

during natural delivery or caesarean section from a healthy queen aged from 1.5 to 5 years old. 

The two different parts of the umbilical cord were separated (Wharton's jelly and vessels). Each 

part separately was minced into small pieces and then subjected to digestion using collagenase 

type 1. The cells were cultured in a stromal medium and characterised using the minimal criteria 

for defining MSCs, their morphology, self-renewing, differentiation potential, 

immunophenotyping and gene expression to obtain an alternative source of MSCs. 

In this study, mesenchymal stem cells were isolated and successfully cultured from all parts of 

the feline umbilical cord; the proliferative potential was measured by cumulative population 

doubling level and doubling time test; we performed chondrogenic, osteogenic, and adipogenic 

induction under each differentiation condition to confirm the differentiation potential. The 
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surface markers expression was performed using flow cytometry, then pluripotency gene 

expression by RT-PCR. 

MSCs isolated have been shown to exhibit the MSCs characteristics: a typical spindle shape 

consistent with MSCs morphology and the ability to differentiate into multiple lineages, 

including chondrogenic, osteogenic, and adipogenic differentiation and high proliferation 

capacity. Mesenchymal markers of MSCs (CD44+, CD90+) and pluripotency markers (NANOG, 

Oct4, SOX2) were expressed in the cells isolated, but no hematopoietic markers (CD34, MCH I). 

The comparison between the MSCs isolated from the WUC, WJ and UCV revealed that WJ-

derived MSCs showed more significant pluripotency gene expressions, the highest proliferation 

ability, and more tremendous differentiation potential than the mesenchymal cells isolated from 

WUC and UCV. 

In conclusion, it can be stated that in cats, the MSCs can be obtained from all regions of the 

umbilical cord, but the most efficient tissue is the Wharton jelly, which serves as the foundation 

for further research concerning the non-invasive collection of mesenchymal stem cells and its 

further utilisation in feline clinical and regenerative medicine. However, it is crucial to 

emphasise that cells isolated from the WJ tissue exhibit the best MSCs characteristics and can 

offer the best clinical utility. 
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a b s t r a c t

Mesenchymal stromal/stem cells (MSCs) are a particular population of cells that play an essential role in
the regeneration potential of the body. As a source of MSCs, the umbilical cord (UC) has significant
advantages, such as a no-risk procedure of tissue retrieval after birth and the easiness of MSCs isolation.
In the presented study, the cells derived from the feline whole umbilical cord (WUC) and two separate
parts of the UC tissue, including Wharton's jelly (WJ) and umbilical cord vessels (UCV), were investigated
to check whether they exhibit MSCs characteristics. The cells were isolated and characterized based on
their morphology, pluripotency, differentiation potential, and phenotype. In our study MSCs were suc-
cessfully isolated and cultured from all UC parts; after one week of culture, the cells had a typical spindle
shape consistent with MSCs morphology. Cells showed the ability to differentiate into chondrocytes,
osteoblasts and adipocytes cells. Two markers typical of MSCs (CD44, CD90) and three pluripotency
markers (Oct4, SOX2 and Nanog) were expressed in all cells cultures; but no expression of (CD34, MCH II)
was evidenced by flow cytometry and RT-PCR. In addition, WJ-MSCs showed the highest ability of
proliferation, more significant pluripotency gene expressions, and greater differentiation potential than
the cells isolated from WUC and UCV. Finally, we conclude in this study that cat MSCs derived from all
the parts are valuable cells that can be efficiently used in various fields of feline regenerative medicine,
but cells from WJ can offer the best clinical utility.

© 2022 Published by Elsevier Inc.

1. Introduction

In recent years, the possibility of creating tissues and organs by
tissue engineering for research and therapy has generated
increased interest in cells suitable for such use. However, working
with young cells that have undergone a relatively small number of
divisions and can renew themselves in the long term is challenging
[1]. Therefore, the umbilical cord (UC) has become a popular target
of scientific research [2,3].

UC is yellowish-white in color tissue, has a gelatinous appear-
ance, and is slightly twisted; in mammals, it forms a connection

between the fetus and the placenta [4]. This structure is responsible
for the exchange of nutrients and oxygen during gestation. The
umbilical cord's macroscopic structure contains the vein and ar-
teries surrounding the connective tissue [5].UC is of interest to
researchers because it can be easily non-invasive obtained during
parturition, and because it is considered a clinical waste, it has no
ethical controversy [6]. In addition, it is a source of several types of
cells. At least five cell types have already been described in the UC
tissue and blood, including epithelial cells, mesenchymal stem/
stromal cells (MSCs) [7], smooth muscle cells, endothelial cells [8]
and progenitor blood cells [9]. UC-MSCs were isolated from veins,
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extra gelatinous tissue around the vessels, and Wharton's jelly
[10e12]; The umbilical cord-originated cell lines present many
advantages compared to MSCs from other adult tissues, as they
commonly exhibit higher proliferation abilities. In addition, their
genetic and phenotypic stability is maintained even after a long-
term in vitro culture, suggesting they are primitive compared to
adult tissue-derived MSCs [13].

The UC-MSCs morphology, proliferation, immunophenotyping,
and multi-directional differentiation abilities are similar to bone
marrow (BM) derived MSCs [14]. Therefore, they are an ideal
alternative source for BM-MSCs. Furthermore, UC-MSCs are pro-
posed as an essential option in immunotherapy and regenerative
medicine due to their anticancer properties and capacity to secrete
cytokines and growth factors [15].

In feline species, MSCs were isolated from amniotic membrane,
adipose tissue, bone marrow, amniotic fluid, and fat; up to date, the
adipose-derived MSCs were the most commonly used in therapy for
some feline diseases [16]. Mainly kidney diseases [17,18], asthma
[19], gingivostomatitis [20,21] and chronic enteropathy [22].

Numerous published works documented the UC-MSCs isolation,
characterization, and differentiationpotential, including humans and
animals likehorses, dogs, rats, pigs, andsheep [23].Ontheotherhand,
there is a lack of studies carried out in feline species about the MSCs
isolation from distinct parts of the umbilical cord. Therefore, the
present study aimed to isolate and culture MSCs derived from cats,
separately from two parts of the feline umbilical cord (fUC): Whar-
ton's jelly (WJ), umbilical cord vessels (UCV), and thewhole umbilical
cord (WUC). Moreover, we aimed to characterize the MSCs derived
from different compartments of fUC for the first time by their
morphology, plastic adherence, expansion capacity, differentiation
ability and phenotype to find out which part of the cord is the most
suitable for MSCs isolation in this species basis on their basic
characteristics.

2. Material and methods

2.1. Obtaining umbilical cord tissue

The umbilical cords (n¼ 36) were collected from healthy queens,
aged from 1,5 to 5 years, of different breeds during caesarean sec-
tions or natural delivery. The queens were patients of the Depart-
ment of Reproduction and Clinic of Large Animals in Wroclaw. The
umbilical cords were collected in an aseptic manner immediately
after dissection, rinsed with cold buffered saline phosphate (PBS)
(Sigma-Aldrich. Poland), and placed in falcons tubes containing PBS
and 1% penicillin-streptomycin solution (Thermo Fisher Scientific),
then stored at 4 �C until further procedures.

2.2. Mesenchymal stem cells isolation and culture

To isolate the MSCs, the umbilical cords were washed twice with
cold PBS to remove blood clots in a sterile Petri dish (NunclonTM
Delta Surface, Thermo Fisher Scientific, Denmark). Then, using sterile
surgical forceps and a #10 scalpel blade, the two anatomical regions
of each cord were identified and separated: Wharton's jelly and
vessels (vein and arteries). Next, cell isolation was performed sepa-
rately for the two parts of the umbilical cord: Wharton's jelly (WJ),
umbilical cord vessels (UCV), and the whole umbilical cord (WUC).
Using the protocol described by Qingqiu et al. [24]with some mod-
ifications: as described below, the collected WJ, UCV and the entire

cord were placed in an individual sterile culture dish. The tissue was
minced into a 2 mm square using a bistoury blade and then trans-
ferred to 15 ml centrifuge tubes containing 0.02% of collagenase type
1 (Merck KGaA, Darmstadt, Germany) in Dulbecco's Modified Eagle's
Medium-low glucose (LG-DMEM) (Merck KGaA, Darmstadt, Ger-
many). Samples were incubated at 37 �C for 20 min for tissue
digestion. Afterwards, the samples were centrifuged at 300�g for
5 min and washed in PBS. Next, the stromal vascular fraction was
resuspended in a stromal medium: LG-DMEM with 10% fetal bovine
serum (FBS) (Merck KGaA, Darmstadt, Germany) and 1% antibiotic
solution, and cultured in T-25 flasks (Techno Plastic Products AG,
Switzerland). Half of the mediumwas refreshed after 24 h, changed
every 3 days and passed when the cells reached 80% confluence.

2.3. Cell doublings and doubling time

Primary cells fromWJ, UCV, and WUC at passage 1 were seeded
in triplicate at a density of 5 � 103 cells/cm2 in 12 well plates
(Techno Plastic Products AG, Switzerland) as previously described
by Zhang et al. [25] using the above described stromal culture
medium. Cell numbers were assessed after 2, 4 and 6 days of cul-
ture using a trypan blue and hemocytometer. Cells doubling
numbers (CD) and doubling time (DT) were calculated according to
the following formulas:

CD ¼ ln(Nf /Ni)/ln (2)

D T ¼ CT/CD

Where CT is culture time, Nf is the final cell number, and Ni is the
initial cell number.

Data from all days for each sample were combined within pas-
sages to calculate the mean and standard error.

RNA extraction and real-time reverse transcription PCR (qRT-
PCR).

MSCs from WUC, WJ, and UCV were seeded in 6-well plates at a
density of 1 � 106 cells per well in a stromal medium until reaching
(80e90%) confluence. Total RNA was extracted from cells using TRI
Reagent according to themanufacturers instructions. RNA purity and
concentration were measured using a nano spectrophotometer
(denovix ds-11). cDNA was prepared from total isolated RNA using a
Tetro cDNA Synthesis Kit (Bioline, London, UK).To determine the
expression levels of MSCs pluripotency markers (OCT-4, SOX2,
NANOG), real-time reverse transcription-polymerase chain reaction
(RT-PCR) was performed using the SensiFAST SYBR Green Kit (Bio-
line, London, UK) in a CFX Connect™ Real-Time PCR Detection Sys-
tem (Bio-Rad). For the 10 ml reaction volume, the following cycling

Table 1
Sequences of primers used in the gene expression profiling of WJ-MSCs, UCV-MSCs
and WUC-MSCs by using RT-PCR.

Gene Primer Sequence 50e3.' Annealing temperature (�C)

SOX2 F: CCGAGTGGAAACTTTTGTC 65.4
R: AAAATCTGCAGGAGATATGC

OCT-4 F: AAAATCTGCAGGAGATATGC 54.60
R: ACTCGGTTCTCGATACTTG

NANOG F: GTGACAACTTCACAAAATCG 54.45
R: TCCAGTTTCTCTTCTAGTTCC

GAPDH F: GATGCCCCAATGTTTGTGA 55.60
R: AAGCAGGGATGATGTTCTGG
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conditions were applied: 95 �C for 2 min, followed by 40 cycles for
15s at 95 �C, annealing for 15 s, and elongation at 72 �C for 15 s.
Sequences for all used primers are listed in Table 1. All results were
normalized to glyceraldehyde 3-phosphate dehydrogenase (GAPDH)
expression. The relative level of the expression was calculated using
the 2 �DCQ method.

2.4. Immunophenotyping

Flow cytometry was used to assess the MSC immunopheno-
typing of UC cells, using the standard minimal criteria for MSC
described by the position paper of the International Society for
Cellular Therapy (ISCT) [26]. Cells at Passage 2 were detached using
trypsin EDTA and then centrifuged. The pellet was resuspended in
PBS with 1% FBS and counted. One million cells of each population
were used for flow cytometry. Cells were conjugated with anti-
bodies against CD90, CD44, CHMII, and CD 34 in dark at 4 �C for
30 min. Following the incubationwith antibodies, cells were rinsed
with PBS. For CD44, CHMII detection cells were additionally incu-
bated with a secondary antibody. An appropriate isotype-matched
control antibody was used. Samples were analyzed using

FACSCalibur, equipped with a 488-nm laser. Data were recorded for
at least 5000 events using CellQuest version 3.3 software. The
percentage of positive cells in each sample and the expression level
of selected antigens for each antigen were evaluated. Data were
presented as histograms using WINMDI 2.8 software. Antibodies
information are shown in Table 2.

2.5. Tri-lineage differentiation assay

Osteogenic, adipogenic, and chondrogenic differentiation ability
was confirmed in cells isolated from UCV, WJ, and WUC. All ex-
periments were performed on cell samples at passage number 3.
Every experiment consisted of a control group cultured in a stromal
medium and a treated group cultured in a stromal medium to reach
80% confluence and then maintained in a specific induction me-
dium. The results were visualized under an Olympus IX73 inverted
microscope (Olympus Polska sp.z.o.).

2.6. Osteogenic differentiation

To determine the osteogenic differentiation capacity of WJ-

Table 2
Antibody information.

Antibody Isotype Label Crosse/reactivity Host Manufacturer Catalog # Antibody dilution

MHC Class II IgG2b Purified Cat Mouse Bio-Rad MCA2723 4:100
CD90 IgG1,k PE Human Mouse BD Biosciences 555596 1:10
CD34 IgG1,k FITC Human Mouse Bio-Rad 555821 1:10
CD44 IgG1 Purified Human Mouse Bio-Rad MCA1719GA 4:100
Control IgG1 PE / Mouse Antibodies ABIN376413 1:10
Control IgG1 FITC / Mouse Invitrogen GM4992 4:100
Secondary Antibody IgG (H þ L) FITC Mouse Goat Invitrogen A16079 1:1000

Fig. 1. Representative morphology of feline umbilical cord mesenchymal stem cells from Wharton's jelly (WJ) (A, D), umbilical cord vessels (UCV) (B, E), and the whole umbilical
cord (WUC) (C, F) after 3 (A, B, C) and 10 (D, E, F) days of culture Bar ¼ 100 um.
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MSCs, UCV-MSCs, and WUC-MSCs cells at density 1 � 105 per well
were cultured in the osteogenic induction medium (Mesenchymal
Stem Cell Growth Medium. Sigma-Aldrich. Poland) for about 3
weeks; the medium was changed every 3 days. To confirm the
calcium accumulation, the cells were washed two times with PBS
and then fixedwith 4% formaldehyde (PFA) (Sigma-Aldrich. Poland)
for 30 min and next, stained with 2% Alizarin Red S (Sigma-Aldrich.
Poland), incubated in the dark at room temperature for 15 min.

2.7. Adipogenic differentiation

For the adipogenesis, the WJ-MSCs, UCV-MSCs, and WUC-MSCs
were cultured in an induction medium (Mesenchymal Stem Cell
Adipogenic Differentiation Medium. Sigma-Aldrich. Poland) and
incubated for 3 weeks; the mediumwas changed every 3 days. The
cells were examined by Oil Red O staining (Sigma-Aldrich. Poland)
to detect lipid droplets accumulation. First, cells werewashed twice
with PBS, then fixed with 4% PFA and incubated for 45 min at room
temperature, followed by three rinses with PBS. Finally, the cells
were incubated for 5 min in 60% 2-propanol (Firma Chempur.
Poland) before staining in Oil Red O for 5 min at room temperature.

2.8. Chondrogenic differentiation

WJ-MSCs, UCV-MSCs, and WUC-MSCs were also cultured in an

induction chondrogenic medium (Mesenchymal Stem Cell Chon-
drogenic Differentiation Medium. Sigma-Aldrich. Poland) for 21
days. After the differentiation steps were completed, cartilage for-
mation was confirmed using Alcian blue staining. First, cells were
washed gently with PBS to fix the cartilage. Then, the cells were
incubated in 4% PFA for 40 min at room temperature, followed by
two rinses with distilled water. The cells were then stained with
Alcian Blue staining solution (Merck KGaA, Darmstadt, Germany)
and incubated in the dark for 50 min at room temperature.

3. Results

3.1. Umbilical cord tissue isolation

A total of 36 UC were collected in this study. The average um-
bilical cords taken per birth were 3, with a length of 2.5 cm per
umbilical cord; using the enzymatic method, we successfully iso-
lated MSCs fromWUC, WJ, and UCV and evaluated the morphology
of available MSCs.

3.2. Cell isolation and culture

Primary cells isolated from the WJ, UCV, and WUC exhibited a
rhomboid shape after 3 days of culture (Fig. 1 A, B, C). After 10
days of culture, cells from distinct parts formed a monolayer and

Fig. 2. Cell doubling (A) and doubling times (B) (mean ± SEM) for P1eP3 mesenchymal stem cells from (WJ) Wharton's jelly,(WUC) whole umbilical cord, and (UCV) umbilical cord
vessels.
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had a typical spindle shape compatible with the mesenchymal
stem cell morphology (Fig. 1 D, E, F). However, the cells isolated
from the WJ and UCV are larger than those isolated from the
WUC.

3.3. Cell doublings and doubling time (passages P1eP3)

The expansion rate of cells isolated in vitro tended to increase
with passage (Fig. 2-A). Tissue from the deferent part of the um-
bilical cord and the whole cord digest contained a high number of
adherentMSC-like cells that proliferated rapidly. Cells isolated from
WJ tissue proliferated faster than cells isolated fromWUC and UCV
(Fig. 2-B). Cell doubling values (CD) for P1, P2, and P3 for cells from
WJ were 2.29 ± 0.10, 3.06 ± 0.06, 4.03 ± 0.03, from the WUC were
1.91 ± 0.14, 2.69 ± 0.09, 3.85 ± 0.04 and from UCV were 1.38 ± 0.19,
2.59 ± 0.08, 3.73 ± 0.03 (Fig. 2-A). Doubling time for P1,P2 and P3
cells from WJ were 1.14 ± 0.05, 0.76 ± 0.01, 0.67 ± 0.00 days/CD,
from the WUC were 0.95 ± 0.07, 0.76 ± 0.04, 0.46 ± 0.01days/CD
and from UCV were 0.69 ± 0.09, 0.64 ± 0.02, 0.62 ± 0.01 days/CD
(Fig. 2-B).

3.4. Immunophenotyping (P3)

The MSCs derived from two parts of the umbilical cord (WJ,
UCV) and the whole umbilical cord (WUC) were strongly positive
for CD90 and CD44 and were negative for MHC class II and CD 34
(Fig. 3).

3.5. Pluripotency markers expression P(2)

Cells from the three experimental groups were expressed the
pluripotency markers SOX2, OCT-4 and Nanog (Fig. 4). Cells from
WJ, WUC and UCV showed a comparable level of mRNA expression.
The highest expression level of all the genes tested was shown by
WJ-MSCs at passage 2.

Isolated cells showed the capacity to differentiate toward more
than one type of cell line (Figs. 5, 6 and 7); at Passage 3, MSC from
WJ, WUC, and UCV displayed adipocytic (Fig. 5BeD-F), osteoblastic
(Fig. 6BeD-F), and chondrogenic (Fig. 7BeD-F) differentiation
ability, based on histochemical staining following culture in in-
ductionmedium. Cells cultured in the basal stromal medium for the
same period showed no differentiation (control group).

Fig. 3. Representative flow cytometry results showing the expression of CD90 and CD44 as well as the lack of expression of CD34, MHC class II on the MSC derived from the whole
umbilical cord (WUC), Wharton's jelly (WJ) and umbilical cord vessels (UCV).

5

M. Baouche, A. Krawczenko, M. Paprocka et al. Theriogenology 201 (2023) 1e10

61



Fig. 5. Photographs of adipogenic differentiation and Oil Red O staining of WJ-derived MSCs (A, B), UCV-derived MSCs (C, D) and WUC-derived MSCs (E, F) at Passage 3. The MSCs
were maintained in a basal stromal medium (A, C, E controls) and in an adipogenic induction medium (A, C, E) for 21 days. Staining neutral lipids by Oil Red O revealed no
accumulation of lipid drops in control cultures (A, C, E), whereas differentiated cells (B, D, F) demonstrated lipid vacuole formation. Magnification 10 � , Bar ¼ 50 mm. (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 4. Gene expression by a reverse transcription-polymerase chain reaction of MSCs-WUC, MSCs-WJ and MSCs-UCV. All the cells show the expression of the embryonic stem cell
transcriptional factors such as OCT-4, SOX2 and NANOG. GAPDH was used as a reference gene. The results are expressed as the mean of 3 different experiments ± SD. Asterisk (*)
refers to a comparison between the three groups of cells.***p < 0.001.
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4. Discussion

Clinical trials using cellular therapies more and more often use
small animals with naturally occurring diseases as a model for
research to support new investigational human and veterinary
drug applications [27,28] Cats are a valuable translational model of
diseases similar to humans, including asthma [19], chronic enter-
opathy [22], chronic renal failure [29], and chronic oral mucosa
inflammation [30].

Being able to proliferate and differentiate into several cell lines,
MSCs represent a promising option for treating some of the

diseases cited before in cats. Therefore, searching for new and
reliable sources of MSCs is very important in the development of
novel therapies. In the presented study, we aimed to evaluate for
the first time the suitability of the feline umbilical cord compart-
ments to isolate and culture MSCs. In addition, MSCs from the
whole umbilical cord, Wharton's Jelly, and umbilical cord vessels
were characterized using morphological characteristics, self-
renewal, tri-lineage differentiation abilities, specific surface
markers, and gene expression.

In this study, we isolated and cultured cells from the feline
whole umbilical cord and separately from Wharton's jelly and

Fig. 7. Photographs of chondrogenic differentiation and Alcian Blue staining of WJ-derived MSCs (A, B), UCV-derived MSCs (C, D) and WUC-derived MSCs (E, F). MSCs were
maintained in a basal stromal medium (A, C, E controls) and in an osteogenic induction medium (B, D, F) for 21 days. The control culture (A, C, E) showed a lack of significant
accumulation of cartilage. The intense blue color indicates the cartilage formation in the differentiated culture (B, D, F) stained with Alcian Blue. Magnification 10 � , Bar ¼ 50 mm.
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 6. Photographs of osteogenic differentiation and Alizarin Red staining of WJ-derived MSCs (A, B), UCB-derived MSCs (C, D) and WUC-derived MSCs (E, F). MSCs were
maintained in a basal stromal medium (A, C, E controls) and in an osteogenic induction medium (B, D, F) for 21 days. The control culture (A, C, E) showed a lack of significant
accumulation of calcium after Alizarin Red S staining. In contrast, the differentiated culture (B, D, F) stained deep red in areas of mineral deposition. Magnification 10 � ,
Bar ¼ 50 mm. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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umbilical cord vessels. All the cells isolated were adherent to the
plastic and showed fibroblast and spindle-like morphology as re-
ported in studies performed on the feline MSCs, isolated from bone
marrow-derived MSCs [31], adipose tissue-derived MSCs [32], fetal
fluid-derived MSCs [33] and fetal membrane-derived MSCs [34].

Several parameters can affect cell yield during the isolation of
the cells, including the temperature, time of incubation and type of
the enzyme [35]. Umbilical cord tissue is considered as a source of
young adult cells [36]. To minimize the negative impact of the
isolation on the quality and the quantity of ourMSCs, it was decided
to process the isolation of the cells in our study using a shorter time
of incubation and a lower concentration of the enzyme (collagenase
type I at 0.02% for 20 min at 37 �C) comparing to other reports.
Whereas the enzymatic digestion methods used by the other
teams, utilized longer incubation time (30 min incubation) and
higher concentration of collagenase (0,1%) [37], or the same 0.1% of
the collagenase type I but much more prolonged incubation (3 h)
[38]. The cell yield is very heterogeneous from one published
protocol to another. Therefore, we decided to adjust our procedure,
as our preliminary studies proved better results with shorter times
and concentrations. In our study, the in vitro expansion rates of the
Wharton's jelly-derived MSCs were slightly higher than those
observed in the umbilical cord vessels-derived MSCs and the whole
umbilical cord-derived MSCs, which is comparable to the results
reported by Ekaterina et al. [39] who described the human MSCs
derived from distinct parts of the umbilical cord: perivascular
space, Wharton's Jelly and the umbilical membrane, and showed
that only the MSCs isolated from Wharton's jelly were character-
ized by a high potential for proliferation and differentiation, and the
populations obtained had higher purity than in the other groups.

Researchers have already described the presence of human
MSCs in the umbilical cord compartments, including cord lining,
Wharton's jelly, veins, and the perivascular region [40,41]. For
example, in the study conducted by Subramanian et al., human
MSCs were isolated from the whole umbilical cord, subamnion,
amnion, perivascular and Wharton's jelly [24]. The authors re-
ported that MSCs were cultured from all cord regions, demon-
strated by their plastic adherence and ability to differentiate along
chondrogenic, adipogenic, and osteogenic lineages. Moreover,
MSCs derived from Wharton's jelly showed better differentiation
and higher proliferation than MSCs isolated from individual cord
regions. These data agree with our findings that morphology and
adherence properties were not different within all derived MSCs
populations, isolated from different compartments of cats' umbil-
ical cord.

Furthermore, in our study, the trilineage differentiation: adi-
pocytes, osteoblasts and chondrocytes was expressed in all MSCs
isolated from different parts of the umbilical cord by showing
positive staining for cells induced. Wharton's jelly MSCs showed
the best differentiation to all lineage compared to MSCs derived
from the whole umbilical cord and the umbilical cord vessels.
Several teams have reported that Wharton's jelly MSCs could also
differentiate very efficiently toward endothelial cells [42],
pancreatic-like cells [43], hepatocytes [44] and skeletal muscle
[45].

In animals, there are no minimal criteria for defining MSCs
based on the surface antigens, as it is reported in humanMSCs [46].
To date studies concerning MSCs in cats, mainly described adipose-
derived MSCs, and noted that cells were positive for CD90, CD44
and negative for CD34. While the expression of CD73 and 105
depended on the origin of the tissue or were not expressed
[31,32,47] Considering the above, in our experiments, we decided
to test the following markers: CD44, CD90, CD105, CD34 and MHC
II. It was decided not to include the CD73 as it was shown before
that it is not expressed in feline cells [33]. Furthermore, we chose

not to include the CD105 in the final results as the anti-feline CD105
antisera was not commercially available. On the other hand, we
tested antibodies against CD105 that were reported to be used in
cat MSCs [48] but we could not obtain positive results. For that
reason, in this study, MSCs isolated from the whole umbilical cord,
Wharton's jelly and umbilical cord vessels were investigated using
flow cytometry; all the examined samples showed a positive
expression for CD90 and CD44 and lacked the expression for major
histocompatibility class II (MHC II) and hematopoietic marker
CD34. Our results showed the accordance with other reports on
feline MSCs isolated from different tissue [32,49].

In addition, the results obtained in our study demonstrated the
presence of embryonic stem cells SOX2, Nanog and OCT-4 in feline
WUC-MSCs, WJ-MSCs and V-MSCs at the mRNA level with signif-
icant differences among the investigated groups. Comparing the
pluripotency expression from the different compartments of the
UC, the genes tested were highly expressed in Wharton's jelly-
derived MSCs compared to other parts of the umbilical cord. Un-
fortunately, previously published studies showed inconsistent re-
sults in the stem cell markers expression in MSCs. For example,
Greco et al. and other teams have confirmed NANOG, OCT-4 and
SOX2 stem cell markers expression in MSCs derived from human
bone marrow, heart, adipose tissue, liver, dermis and Wharton's
jelly [50e52]. Whereas, Pierantozzi et al. [53] have not detected
SOX2 and OCT4 in the human heart, adipose tissue and bone
marrow MSCs. OCT-4 gene knockdown promotes differentiation,
thereby that transcriptional factors play an essential role in stem
cell self-renewal, while SOX2 is a transcription factor co-expressed
with OCT-4. Park et al. [54]. and Han et al. [55] showed that Sox2
and OCT-4 are necessary for the enhanced proliferation of human
MSCs. Therefore, the high expression of SOX2 and OCT-4 in
Wharton's jelly-derived MSCs confirmed in our cells could be one
of the reasons for the high proliferation activity in Wharton's jelly-
derived MSCs.

In conclusion, MSCs were successfully isolated from the whole
feline umbilical cord and the two separate anatomical regions of
the umbilical cord:Wharton's Jelly and vessels. All the isolated cells
displayed the MSCs characteristics: the ability to self-renew, stem
cell markers expression, the capacity of cell doubling and tri-
lineage differentiation potential. Wharton's jelly-derived MSCs
showed higher expansion, more remarkable differentiation ability,
and best pluripotency markers expression. Taken together, our data
suggest that Wharton's jelly provides the best source for MSCs in
cats umbilical cords. However, if necessary, the whole feline um-
bilical cord and umbilical cord vessels may also be considered a
good source of MSCs.
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In the second part of the study, we used the mesenchymal stem cells obtained from feline 

umbilical cords using the materials and methods developed in the first stage of the experiments. 

In this part, we focused on utilising mesenchymal stem cells from feline Wharton's jelly, as they 

demonstrated highly favourable characteristics. In this part of the study, we would like to check 

its biological competence to support (and possibly enhance) the feline oocyte maturation and 

embryo development in vitro. The whole manuscript summarises that part of the research was 

published in Frontiers in Veterinary Sciences journal, with the title Feline Wharton's Jelly-

derived mesenchymal stem cells as a feeder layer for oocytes and embryo culture in vitro. 

Frontiers in Veterinary Science Journal (2023), 10:1252484. doi: 10.3389/fvets.2023.1252484. 

 

The study involved collecting feline oocytes, which were utilised in three distinct experiments 

described in the Materials and Methods chapter 4. That part of the study was divided into 3 

experiments, as follows: 

Experiment 1: In vitro, oocytes maturation were co-cultured in the presence of two different 

maturation mediums, bovine (BoM) and equine medium (EqM), with or without MSCs coculture 

in the maturation medium, then the nuclear maturation and the cumulus cell expansion were 

assessed. 

The experiment 1 results showed that co-culturing oocytes with MSCs in the presence of a 

bovine or equine medium did not affect the maturation rate. However, the co-culture system did 

lead to a higher cumulus cell expansion rate than the group without MSCs coculture. 

Experiment 2: in vitro, oocytes maturation were co-cultured in the presence of two different 

maturation mediums, bovine (BoM) and equine medium (EqM), with or without MSCs 

coculture. After fertilisation, the embryos' development was performed in BoM and EqM 

without MSCs. 

The results from experiment 2 showed there was a noticeable increase in cleavage, morula, and 

blastocyst development percentages when using MSC co-culture conditions compared to 

commercial media used alone. The statistical significance difference was reported to be p < 0.05. 

Experiment 3: The oocytes were matured in BoM and EqM medium, and then the embryo 

culture was performed in the bovine or equine medium and with or without MSCs coculture.  
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In the results obtained, we observed a notable rise in morula and blastocyst rate in the embryos 

that were co-cultured with MSCs, with a P value (P < 0.05). Furthermore, the pure equine media 

supported better the embryonic development and blastocyst rate than the pure bovine medium. 

To conclude, our findings have shown that the presence of MSCs during oocyte maturation did 

not affect the nuclear maturation of the oocytes, but can significantly enhance further embryo 

development. Additionally, adding MSCs during embryo culture increased the number of morula 

and blastocysts, indicating their potential to support embryo growth. Further research is 

necessary to fully understand the benefits of MSCs in oocyte maturation and embryo 

development in cats and optimise their use in this important study area. 
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Feline Wharton’s jelly-derived 
mesenchymal stem cells as a 
feeder layer for oocytes 
maturation and embryos culture 
in vitro
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Yann Locatelli 2,3 and Wojciech Nizanski 1*
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Introduction: Due to their capacity to release growth factors and cytokines, co-
culture using mesenchymal stem cells has been considered a good alternative to 
promoting the maturation of the oocytes and the embryo’s development quality 
in vitro in diZerent mammalian species. In this regard, we investigated the eZect of 
feline Wharton’s jelly MSCs as feeders layer in oocyte maturation—consequently, 
the development of resulting embryos in co-culture.

Methods: Oocytes with dark cytoplasm and a few layers of cumulus cells 
were collected and subjected to in vitro maturation and embryo culture using 
commercial media with and without MSCs addition. The oocytes’ nuclear 
maturation and the degree of cumulus expansion in diZerent groups were 
assessed after 24W h; the development of the embryo was evaluated every 12W h 
until day eight.

Results: Although MSCs increased the proportion of cumulus cells oocytes 
exhibiting cumulus expansion, there were no significant diZerences in the 
percentage of matured oocytes (metaphase II) among the groups (pW >W 0.05). 
However, the embryo development diZers significantly, with a higher cleavage, 
morula, and blastocyst percentage in oocytes matured with MSC co-culture 
conditions than in commercial media alone (pW <W 0.05). Also, we observed higher 
morula and blastocyst rates in the embryos co-cultured with MSCs during the in 
vitro culture (pW >W 0.05).

Conclusion: Based on our results, the co-culture with MSCs during the oocyte 
maturation resulted in better embryo development, as well as the MSCs addition 
during embryo culture returned an increased number of morula and blastocysts. 
Further research is needed to fully understand and optimize the use of MSCs in 
oocyte maturation and embryo development.
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Introduction

Due to the decreasing number of wild felids, domestic cats (Felis 
catus) as a model for studying reproduction physiology and developing 
new assisted reproductive technologies (ART) are gaining more and 
more importance (1).

ART has been used for several years to preserve genetic material, 
circumvent problems of subfertility, improve male reproduction, and 
increase the reproductive results and number of odspring that a single 
female can obtain. ce post-fertilization period is an essential step in 
culturing embryos in vitro. cerefore, it is crucial to carefully plan the 
culture conditions during this period to ensure proper embryonic 
development. Inadequate culture conditions can signibcantly impact 
embryonic homeostasis, leading to short-term changes in morphology, 
cell proliferation, and metabolism and resulting in apoptosis. Such 
changes can ultimately lead to a reduction in both the number and 
quality of the formed blastocysts.

Aaer years of investigations, the basic nutritional requirements for 
oocytes and embryos have been established, guaranteeing successful in 
vitro development in horses (2), cattle (3), pigs (4), mice and humans 
(5). However, ART in a feline species is still not as e`cient as in other 
animals. Unfortunately, the culture conditions dedicated for cat oocytes 
and embryos have not yet been adequately investigated, and on average, 
in vitro, only around 60% of cats’ oocytes reach the MII phase, and less 
than a half of the cleaved embryos become blastocyst (6). Furthermore, 
the low rate of embryo production from feline oocytes re_ects the need 
for a better understanding of the developmental competence of feline 
oocytes and their specibc requirements during in vitro maturation, 
fertilization and embryo development. Current ART procedures lack 
knowledge of the interaction of gametes with several components 
present in the reproductive system during the maturation of oocytes 
and early stages of embryo development. To mimic the in vivo complex 
microenvironment in vitro, recent advances used a co-culture of 
oocytes and embryos with oviduct epithelial cells, mesenchymal stem 
cells (MSCs), cumulus cells and extracellular vesicles (EVs) in the 
reproductive environment with the aim to obtain in vitro embryos with 
developmental levels similar to embryos derived in vivo.

MSCs possess multi-potentiality and properties of immunological 
and in_ammatory regulation. Cell therapy based on their transplant 
is a promising approach, as these cells can develop into adipocytes, 
osteoblasts, chondrocytes, smooth muscle cells, and endothelial cells 
and can express many specibc markers depending on the 
environmental conditions in which they are found (7). ce most 
common sources of MSCs are of adult origins, such as bone marrow 
or adipose tissue, but their removal requires an invasive clinical 
procedure. Perinatal sources like an umbilical cord, mainly Wharton’s 
jelly, oder higher practical accessibility and good quality MSCs with a 
higher proliferation rate and more potent immunomodulatory 
properties (8). In vitro, MSCs can thus promote cell viability and 
angiogenesis by producing growth factors. cey also stimulate the 
recruitment of endogenous stem cells by secreting chemokines and 
acting locally through cell–cell interactions based on receptor-ligand 
bonds or through nanotubes that transfer molecules and organelles (9).

MSCs’ properties make them a suitable candidate for improving 
the performance of in vitro production systems in mammalian species. 
In fact, many studies have used MSCs or their derived biomaterials in 
a co-culture system with oocytes and/or embryos, with most studies 
indicating improved embryo development (10). Furthermore, it has 

been shown that coculture with MSCs could rescue poor-quality 
embryos and enhance early embryonic development (11, 12). 
Additionally, coculture with MSCs has been observed to enhance the 
cytoplasmic and nuclear oocyte maturation in vitro (13, 14). Based on 
these bndings, we  hypothesise that feline Wharton’s Jelly-derived 
MSCs could improve oocyte maturation and embryo culture in vitro. 
In this regard, we aimed to evaluate the in vitro edect of fWJ-MSCs 
added as a feeder layer in the co-culture system during cats’ oocyte 
maturation and embryo development, in comparison to 
non-conditioned, commercial maturation and culture media.

Materials and methods

All chemicals and reagents were purchased from Sigma Aldrich 
Poland unless stated otherwise. Ethical approval was not sought, as it 
is not required for studies carried out on cells obtained from tissues 
that were surgical waste (Decision No. 004/2021). Commercial media 
were used for the oocyte manipulation and maturation: IVF 
Bioscience, Bickland Industrial Park, Falmouth, United Kingdom.

Mesenchymal stem cells isolation and 
characterization

MSCs were isolated and characterized, as mentioned in our 
previous study (8). Umbilical cords were collected from healthy 
queens (1.5–5 years old) aaer a normal birth and caesarean sections; 
the cells were obtained from Wharton’s jelly parts of the umbilical cord 
(fWJ-MSC—feline Wharton’s jelly mesenchymal stem cells) using 
collagenase type I at 0.02% in DMEM-LG. ce cells were cultured in 
DMEM-LG containing 10% FBS and 1% PS at 37°C in humidity. 
Adherents’ cells were grown until reaching 80 to 90% con_uence 
before each passage, and the medium was changed three times a week. 
Before fWJ-MSCs were used, the cells were identibed and 
characterized based on their expansion rate, tri-lineage diderentiation 
(adipocytes, chondrocytes, and osteoblasts), cell surface markers 
(CD44, CD90, CD34, and MHC II) and pluripotency genes expression 
(OCT4, SOX2, NANOG).

Preparation of Wharton’s jelly 
mesenchymal stem cells

To use fWJ-MSCs as a feeder layer, the cells at passage 2 to 3 were 
seeded in four well plates at a density of 1 × 104 cells/mL in DMEM-LG 
containing 10% FBS and 1% PS at 37°C in humidity until reaching 
80% to 90% con_uence, nonadherent cells were removed by washing 
twice with PBS. ce adherent cells were inactivated with 10 μg/mL 
mitomycin C for 2 h to avoid nutrients competition. Aaer a series of 
washes with PBS, the culture was maintained in DMEM-LG for 24 h 
before the oocytes or embryos were co-cultivated.

Ovaries and oocytes collection

Ovaries were obtained from sexually matured domestic queens 
subjected to a routine ovariohysterectomy or ovariectomy at the 
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University clinic and local veterinarians in Wroclaw. Aaer surgical
removal, ovaries were stored in PBS with 1% of Antibiotic Antimycotic
Solution at 4°C for up to 24h before the recovery of cumulus-oocyte
complexes (COCs). COCs were collected by slicing ovaries with a #10
scalpel blade in an OPU medium. Isolated COCs were classibed under
a dissecting microscope. Only oocytes with evenly pigmented dark
ooplasm and some layers of cumulus cells were selected for
further procedures.

In vitro maturation of cat oocytes

ce selected COCs were placed in a four-well plate in 400μL of
plain bovine maturation medium (BoM) and plain equine maturation
medium (EqM) or in the same medium with MSCs co-culture:
BoM+MSCs or EqM+MSCs, under mineral oil and matured for 24h
at 38.5°C in 5% CO2 in the air with maximum humidity.

In vitro fertilization

For in vitro fertilization, the oocytes were fertilized with frozen–
thawed semen and cryopreserved according to the protocol
described  by  Partyka  et al. (2012).(15) Semen straw  was  thawed  
in awater bath at 37°C then washed in IVF medium followed 
bycentrifugation  at  35,000 rpm  for  5 min. Aaer  24 h  of  
maturation,cumulus  oocytes  complex  were  washed  in  IVF  
medium; thenincubated with 1 × 106 motile spermatozoa/ml for 18
h  in  400μL  ofIVF  medium  under  mineral  oil  at  38.5°C  in  5% 
CO2 in the air withmaximum humidity.

Assessment of oocytes maturation

In order to establish the assessment of oocyte maturation aaer
24 h of IVM, all the cumulus cells were mechanically removed using
a glass pipette overheated and pulled to achieve the diameters of
approximately 165μm, slightly larger than the oocyte. Oocytes were
aspirated and blown out repeatedly until most cumulus cells were
removed. Aaer most of the cumulus cells were removed, the oocytes
were washed twice and bxed with 4% formaldehyde for 15 min _owed
by washing in PBS and then incubated in DAPI stain solution for
10min in the dark and mounted on glass slides in drops of Vectashield
(Vector Laboratories, Ltd. United Kingdom). ce nuclear state of the
stained oocytes was assessed under a _uorescence microscope
(Olympus IX73) at 360 excitations and 450nm emission. Oocytes with
distinct polar body or two separate and bright chromatin spots were
classibed as entering the MII stage.

Embryo culture and assessment of the
embryo development

Aaer fertilization, presumptive zygotes were washed and
transferred to a new plate in a droplet of 50 μL of either BoM or EqM
medium or co-culture BoM +MSCs, EqM +MSCs medium
(depending on the part of the experiment) covered with mineral oil
and incubated at 38.5°C in 5% CO2 in the air with maximum humidity
for up to 8days. To assess embryo development, morphological

changes were evaluated and noted every 8 to 12h. ce subsequent
developmental stages were noted for each group, and the blastocyst
formation was recorded.

Study design

Experiment 1: the eEect of the co-culture with
MSCs on the oocyte maturation and cumulus cell
expansion

cis experiment evaluated nuclear maturation and cumulus cell
expansion. Oocytes were matured in 400μL of IVF medium under
mineral oil at 38.5°C in 5% CO2 in the air with maximum humidity.
In total, 180 oocytes were used in this part of the study, and three
independent replicates of 15 oocytes per experimental group were
carried out. Study groups were as follows:

• Maturation in BoM (n =45 oocytes).
• Maturation in EqM (n = 45 oocytes).
• Maturation in BoM + MSCs (n =45 oocytes).
• Maturation in EqM +MSCs (n =45 oocytes).

ce degree of nuclear maturation was analyzed aaer 24 h.

Assessment of cumulus cells expansion
ce degree of cumulus cells expansion aaer 24 h of oocyte

maturation using two diderent commercial media and with or
without MSC addition was assessed as described by Lee et al. (16).
ce evaluation system was as follows: no expansion, limited
expansion (less than three layers of cumulus cells expended),
expended (more than three layers of cumulus cells expanded) and
oocytes with no cumulus cells attached were classibed as degenerated)
(Figure 1).

Assessment of nuclear maturation
ce nuclear state of the stained oocytes was assessed under the

_uorescence microscope (Olympus IX73) at excitation 360 and
450nm emission. Oocytes with distinct polar bodies or two separate
and bright chromatin spots were classibed as entering the MII stage
(Figure 2).

Experiment 2: the eEect of the co-culture with
MSCs during oocyte maturation on embryo
development

cis part of the study was done to assess the edect of the co-culture
system with MSCs during maturation in two commercial media on
the subsequent embryo development aaer in vitro fertilization. In
total, 565 oocytes were matured and cultured in four groups,10
replicates per group, as illustrated in Figure 1. Embryonic development
(cleavage, morula and blastocysts rate) was compared among
all groups.

Experiment 3: the eEect of co-culture with MSC
during embryo development

At this stage, the oocytes were matured in EqM or in BoM then
the MSCs were added during the embryo development to evaluate
their edect on the morula and blastocyst formation. In total, 486
oocytes were matured and cultured in four groups, 10 replicates per
group, as presented in Figure 1.
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Statistical analysis

Data were analysed using one-way ANOVA followed by Tukey’s 
multiple comparison test using Statistical soaware (TIBCO, 

United States). Values are shown as mean ± S.E.M.. ce signibcance level 
was p < 0.05, and at least three independent replicates were performed in 
all experiments. Nonparametric data, such as diderences in the percentage 
values between groups, were assessed using the chi-square test.

FIGURE 1

Study design of the experiment 2: the eZect of the co-culture with MSC during oocyte maturation on the subsequent embryo development. Oocytes 
were matured and embryos cultured in four groups: EqMW +W MSCs/EqM: maturation in EqMW +W MSCs/embryo culture in EqM (nW =W 109). EqM/EqM: 
maturation in EqM/embryo culture in EqM (nW =W 109). BoMW +W MSCs/BoM: maturation in BoMW +W MSCs/embryo culture in BoM (nW =W 124). BoM/BoM: 
maturation in BoM/embryo culture in BoM (nW =W 103) and experiment 3: The eZect of MSC addition during embryo development. Oocytes were 
matured, and embryo culture was carried out in four groups: EqM/EqMW +W MSCs: maturation in EqM/embryo culture in EqMW +W MSCs (nW =W 142). EqM/EqM: 
maturation in EqM/embryo culture in EqM (nW =W 109). BoM/BoMW +W MSCs: maturation in BoM/embryo culture in BOMW +W MSCs (nW =W 132). BoM/BoM: 
maturation in BoM/embryo culture in BOM (nW =W 103). The figure was prepared with BioRender.
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Results

EEect of co-culture on the cumulus cells 
expansion

ce degree of COCs expansion was signibcantly increased in the 
EqM + MSCs and BoM + MSCs groups compared to EqM and BoM 
or groups (p < 0.05) (Figures  2, 3). Furthermore, there was no 
signibcant diderence between the EqM + MSCs and BoM + MSCs 
groups. ce evaluation of the degree of cumulus cell expansion 
conbrmed that co-culture with MSC showed a considerable increase 
in the proportion of COCs that showed cumulus expansion 
(p < 0.05).

EEect of diEerent culture conditions on 
the eGcacy of maturation of oocytes

Nuclear maturation was evaluated using DAPI staining and showed 
a similar percentage of metaphase II (M II) (Figure 4B) in all investigated 

groups, which ranged from 45% to 55% (p > 0.05). ce co-culture system 
with MSCs did not adect the nuclear maturation of oocytes (Figure 4A).

Development of embryos derived from oocytes 
matured under diEerent maturation conditions

As shown in Table 1, the percentage of the oocytes which cleaved 
was similar in the co-culture group EqM + MSCs and BoM + MSCs and 
higher (p < 0.05) than in the EqM and BoM group. ce rate of the morula 
was similar among EqM, BoM and BoM + MSCs groups but higher in 
the group of oocytes matured in EqM + MSCs. ce oocytes matured in 
EqM + MSCs showed the most promising development and the highest 
number of blastocysts compared with the BoM + MSCs, BoM and EqM 
groups. cus, the use of MSC as a co-culture during oocyte maturation 
has an edect on the further development of feline embryos (Table 1).

Development of embryos cultured under 
diEerent conditions

ce rate of development of the resulting two-cell embryos was 
higher in the co-culture group of EqM + MSCs and BoM + MSCs 
compared with two-cell embryos that were cultured in BoM and EqM 

T0 24

EqM

BoM

EqM-MSC

BoM-MSC

FIGURE 2

EZect of feline MSCs cells on cumulus expansion of oocytes after IVM. The degree of cumulus expansion at T0 and after 24 h of IVM in four groups 
EqMW +W MSC, BoMW +WMSC, EQM, and BoM. The images were taken with a magnificationW =W 200 um.
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FIGURE 3

EZect of feline MSCs cells on cumulus expansion of oocytes after in 
vitro maturation. The cumulus expansion scoring system was as 
follows: limited expansion, no expansion, degenerated oocytes, 
denuded and expanded oocytes in four groups EqMW +WMSCs, 
BoMW +W MSCs, EQM, BoM. The Data are shown as the meanW ±W S.E.M.. 
***, **, *Within the columns, values are significantly diZerent 
(pW <W 0.05).

FIGURE 4

(A) EZect of diZerent maturation conditions on nuclear maturation of feline oocytes. Metaphase II indicated oocyte maturation; the results are shown
as the meanW±W S.E.M. within the columns (p <W 0.05). (B) Representative microscopy images of oocytes in metaphase II illustrating (C,D) polar body
extrusion and nucleus stained with DAPI (BarW=W 50μm).

(p> 0.05). However, we also noticed that the blastocyst/morula rate
was higher in pure EqM media when compared to non-conditioned
Bo culture media (p>0.05).

Discussion

In vivo, oocyte maturation occurs within the ovarian follicle,
while fertilization and early embryo development occur in the
fallopian tubes. When trying to recreate in vitro these physiological
conditions, it is crucial to provide e`cient culture systems (17); the
brst successful in vitro fertilization (IVF) in a domestic cat was

achieved 45years ago using in vivo matured oocytes and in utero-
capacitated spermatozoa (18). Despite advances in culture conditions,
media and protocols for oocyte maturation and embryo development,
in vitro outcomes are still far from desirable compared with embryos
produced in vivo (19, 20). In particular, recent studies have shown the
benebcial edect of co-culture with MSCs (21), oviduct cells, and
cumulus cells (22, 23) on the development of oocytes and embryos in
various mammalian species, including cattle (24), horses (25), pigs
(26) and canines (27). cerefore, culture conditions are crucial in
determining the quality of in vitro-produced embryos. In the present
study, we demonstrated for the brst time the edect of feline Wharton’s
jelly-derived MSCs and diderent commercial media on the
maturation of feline oocytes, cumulus cell expansion and
embryo development.

Oocytes with adequate nuclear and cytoplasmic maturation are
more competent since many proteins and transcripts stored in their
cytoplasm will be required for future embryo development. cerefore,
in this study, we investigated whether the co-culture condition with
MSCs as a feeder layer can in_uence oocyte maturation and their
ability to develop into embryos. Based on the extrusion of the brst
polar body (metaphase II) in each experimental group, we did not
observe the edect of co-culture with MSCs on the oocytes’ nuclear
maturation resulting in comparable percentages ranging between 45
and 55% of MII. Similarly to our results, Ascari et al. (28) showed that
murine MSCs or embryonic bbroblasts did not adect the nuclear
maturation rate of bovine oocytes. In contrast, the addition of the
conditioned medium containing human bone marrow MSCs, as a
supplement to enrich the IVM medium used for germinal vesicles in
mice polycystic ovary syndrome (PCOS) signibcantly increased
cytoplasmic and nuclear maturation of oocytes (13).

However, when analysing the treatment used during maturation,
we observe the morphological diderence in cumulus cells expansion
aaer 24 h of maturation; the oocytes cultured in MSCs-conditioned
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TABLE 1 EBect of diBerent conditions during oocyte maturation on the subsequent embryo development.

Oocytes numberGroup n, 
%

Cleavage n Morula, % n Blastocysts, % n, %

78 (71.56)109EqM + MSCs/EqM a 51 (46.79)a 28 (25.68)a

84 (67.74)124BoM + MSCs/BoM c 48 (38.71)ab 25 (20.16)ab

60 (55.04)109EqM/EqM b 40 (36.69)ab 18 (16.51)b

52 (50.48)103BoM/BoM d 35 (33.98)b 15 (14.56)b

EqM + MSCs/EqM, maturation in EqM + MSCs and embryo culture in EqM; BoM + MSCs/BoM, maturation in BoM + MSCs and embryos culture in BoM; EqM/EqM, maturation in EqM and 
embryo culture in EqM; BoM/BoM, maturation in BoM and embryo culture in BoM; (p < 0.05).

TABLE 2 EBect of diBerent culture conditions on the development of the embryos from the oocytes matured in BoM or EqM.

Group Oocytes number n Morula, % n Blastocysts, % n, %

40 (36.69)109EqM/EqM ab 18 (16.51)c

35 (33.98)103BoM/BoM b 15 (14.56)b

59 (41.54)142EqM/EqM + MSCs a 26 (20.31)a

52 (39.39)132BoM/BoM + MSCs ab 22 (19.82)abc

EqM/MSCs + EqM, maturation in EqM and embryo culture in EqM + MSCs; BoM/BoM + MSCs, maturation in BoM and embryo culture in BoM + MSCs; EqM/EqM, maturation in EqM and 
embryo culture in EqM; BoM/BoM, maturation in BoM and embryo culture in BoM); (p > 0.05).

media had signibcantly increased the cumulus cell expansion
compared to oocytes cultured without MSC addition. Similar
observations were reported for human adipose-derived stem cells
(ASC) added to the medium (ASC-CM) that improved cumulus cell
expansion with high transcript abundance of an expansion-related
gene in porcine (29). It was also reported by Wang et al. (30) that
human Wharton’s jelly MSCs were used to treat mice with induced
premature ovarian failure using a daily dose of intraperitoneal CTX
injection (50 mg/kg) for 15 consecutive days; the results showed that
MSCs reduced cumulus cell apoptosis in investigated mice. Other
authors explored the use of human placental MSCs on human ovarian
granulosa cells obtained from patients with premature ovarian
insu`ciency; the reported results showed that MSCs released
epidermal growth factor (EGF) that reduced apoptosis and improved
proliferation, and restored the oxidative enzyme levels of human
granulosa and cumulus cells (31).

Aaer fertilization, we observed diderences between the oocytes
that matured with and without MSCs. ce embryos derived from the
oocytes matured with MSCs: EqM+ MSCs, BoM+ MSCs showed a
higher cleavage, morula, and blastocyst rate compared to the oocytes
matured in classic BoM and EqM. We observed that the presence of
MSCs during the maturation of oocytes did not adect nuclear
maturation; it still adected the cleavage rate and blastocyst formation.
As reported before, MSCs release several trophic factors, including
EGF and cytokines. ce trophic edects of these bioactive factors on
preantral follicular growth and in vitro maturation of mouse oocytes
have been shown (32); it was also reported that the conditioned
medium containing human MSCs generated microenvironment that
was more appropriate to induce oocyte maturation and increase
embryo development of; they also described that high embryonic
development rates might be associated with the quality of nuclear and
cytoplasmic maturation (33).

ce edect of co-culture with MSCs during embryo development
was also evaluated in our study. In this part of the experiment,
we noticed an improvement in embryo development (Table 2); the
morula and blastocysts rate was higher in EqM +MSCs and

BoM +MSCs than in BoM and EqM. It is interesting to point out that
the embryos co-cultured with MSCs were previously maturated in
classic BoM or EqM media. Our current bndings are similar to the
results of the previous study conducted by Jasmin et al. (34) using
mice embryos; they observed that embryos co-cultured with MSCs for
4 days actually formed more blastocysts. Furthermore, our current
data are similar to those shown by the same group using murine MSCs
and embryonic bbroblast as a co-culture during embryo
development (28).

In general, the co-culture with somatic cells has shown a positive
impact on embryonic development in vitro. Most studies indicate a
higher rate of blastocyst formation aaer culturing embryos with
diderent types of somatic cells (35, 36). However, some studies did not
show signibcant improvement in embryo development (37, 38), and
some others indicated a negative edect of the co-culture system on
preimplantation embryo development (39). However, the co-culture
studies published to date used very diderent types and concentrations
of cells ranging from 1× 103 to 1×106 cells/mL (24, 40), whereas our
study used 1×104 cells/mL, as a long with the main medium used,
time points and oxygen concentrations, so comparisons are very hard
and quite limited.

In fact, despite some similarities, each species may have diderent
requirements regarding the substrates in the medium (41), which
could explain the minor divergent results observed in our study. Here,
we used the same source of mesenchymal cells, but we carried out the
culture using two media dedicated to diderent species (cattle and
horses). It is worth noticing that we noted more blastocysts with the
use of equine media (EqM) compared to bovine (BoM). ce latter
could also have some impact on the results obtained during the
co-culture experiment.

In summary, we investigated the potential of feline Wharton’s jelly
MSC to assist in feline oocyte maturation and embryo growth. With
the addition of feline Wharton jelly MSC both to oocyte and embryo
culture, we observed an improved embryo development. Furthermore,
our results did not show a signibcant impact on the nuclear maturation
process itself, but the addition of MSCs as a feeder layer during the
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maturation or embryo culture still resulted in a higher rate of 
embryonic development. In particular, we found that the co-culture 
with MSCs was most edective during oocyte maturation, as the 
cleavage and blastocyst rates were higher when MSCs were added 
during oocytes maturation than during embryos development. cese 
bndings suggest that feline Wharton’s jelly MSCs could be a promising 
tool for improving in vitro feline embryo development in the future.
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Feline embryos produced in vitro are still of lower quality compared to those produced naturally. 

The laboratory process of growing embryos involves several steps, with in vitro oocyte 

maturation being the crucial stage. This stage significantly impacts the further success of 

preimplantation embryonic development and the following fetal growth[75]. Achieving 

successful oocyte maturation can substantially enhance embryo developmental efficiency, as 

oocytes that have attained the appropriate cytoplasmic and nuclear maturation levels are more 

capable of developing into future embryos. This is due to the fact that these oocytes contain 

numerous proteins and transcripts that play a crucial role in the growth and development of the 

embryo. Ensuring that oocytes are properly matured is a critical step in any fertility treatment or 

assisted reproductive technology[76]. 

Researchers are attempting to refine the culture conditions, including using coculture systems, 

but the outcomes still need improvement. One of the main challenges is that preimplantation 

embryos rely on various factors released by the oviduct, uterus, and embryos themselves[77]. It 

has been reported that MSCs have an antioxidant capacity through the secretion of superoxide 

dismutase. Additionally, MSCs release bioactive substances as growth factors and cytokines that 

support the proliferation, differentiation, and maintenance of other cells[78]. These growth 

factors and cytokines also play an important role in germ cell development, gamete maturation, 

and early embryo development[79]. While MSCs have already been isolated from different 

tissues in cats, including the umbilical cord, so far, no attempts have been made to isolate MSCs 

separately from individual sections of the umbilical cord. 

Therefore, here we investigated for the first time the isolation and characterization of MSCs from 

the whole cord in comparison to separate isolation from vessels and Wharton jelly. Based on the 

obtained results, we were able to define the cell characteristics by their morphology, plastic 

adherence, proliferation, gene expression and trilineage differentiation as described in Chapter 5, 

and then Wharton jelly-derived MSCs were used as a feeder layer to enhance the oocyte's 

maturation and the embryo's development in vitro as presented in Chapter 6. 

In this study, mesenchymal stem cells were successfully isolated from the whole feline umbilical 

cord and separately from the vessels and Wharton jelly and showed the characteristics of typical 

MSCs, including the plastic adherence of the cells, fibroblast-like morphology, differentiation 

potential, and surface markers. 
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To get a larger number of primary cells, we preferred to employ the enzymatic method rather 

than the explant attachment method; all of the isolated cells displayed a plastic-adherent 

fibroblast-like morphology, remained stable, and did not alter their morphology even after 

prolonged culturing periods. The latter feature - cellular stability, even with longer passages, is 

very promising because it enables obtaining numerous, good cell populations suitable for 

applications in tissue engineering. Establishing surface markers to define MSCs in animals has 

not yet been done in the same way as they were defined for humans. However, some studies 

have been conducted on feline MSCs, which have been isolated from various tissues, including 

bone marrow, amniotic membrane, adipose tissue, peripheral blood and umbilical cord. These 

studies suggested that CD44, CD105 and CD90 are expressed in feline MSCs, whereas they lack 

the expression of  CD34, CD4, CD18 and MHC II. Other expression markers have varied in 

different studies[80]. Our study found that MSCs surface markers CD44 and CD90 were 

expressed in the cells we isolated from all parts of umbilical cords, whereas hematopoietic 

markers CD34 and MHC II were not expressed. 

Further, the stemness of the isolated cells was confirmed by the expression of pluripotent 

markers NANOG, OCT-4 and SOX-2 at the mRNA levels, with significant differences between 

the investigated groups. Various studies have conclusively shown that specific pluripotency 

markers are indeed present in the early stages of UC-MSCs culture. However, it has also been 

noted that these markers tend to decrease as the culture is expanded. A comparison of 

pluripotency marker expression across different parts of UCs revealed that fWJ-MSCs exhibited 

a higher concentration of these markers when compared to other cord’s parts[81,82]. According 

to another study, it was found that MSCs derived from the umbilical vein did not express SOX-2, 

but they did show expression of OCT4 and NANOG [83]. These results confirmed that when it 

comes to the expression of pluripotent markers, the WJ is the most favourable MSC source 

compared to other parts of the body. The presence of these markers signifies that the MSCs are 

in an undifferentiated state, which is crucial for maintaining their ability to renew themselves. 

The differentiation competence also plays an important role in confirming the stemness of 

isolated cells. The MSCs from the three groups isolated in this study were differentiated toward 

adipogenic osteogenic and chondrogenic cells by inducing cells into appropriate lineage-specific 

culture conditions. In the present study, staining images of all the osteocytes, adipocytes, and 

chondrocytes differentiated UCV-MSCs and WUC-MSCs showed the same degree of 
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differentiation. However, the fWJ-MSCs isolated in our study showed a higher degree of 

differentiation for adipocytes and chondrocytes. 

It was shown before in human-MSCs that the differentiation potential depends on the tissue 

origin and the concentration of inducible factors; similar to our study, the cells isolated from 

Wharton’s jelly have the most significant differentiation potential, differentiating into various 

types of cells, including bone, fat, and cartilage, as well as cardiomyocytes, neurones, muscle 

cells, and hepatocytes comparing to the other part of the UC[84]. However, this may be simply 

due to the fact that Wharton’s Jelly’s has been more thoroughly studied and had the most 

extensive data compared to the other cord-derived cells. 

Given the broad self-renewing and high proliferation properties of mesenchymal stem cells 

obtained from Wharton’s jelly, as well as their high differentiation capacity, our data also 

suggested that Wharton's jelly is the best source of MSCs from the entire cat’s umbilical cord. 

Moreover, it was shown that fWJ-MSCs secrete a variety of cytokines and growth factors[85]. 

These proprieties made Wharton’s jelly an ideal candidate for the next step of the study. In this 

part fWJ-MSCs were used to evaluate their effects as a feeder layer on the oocyte maturation and 

embryo development in vitro.  

In this second part of the study, we reported for the first time the effect of fWJ-MSCs in a co-

culture system for in vitro production of feline embryos and oocyte maturation, which proved to 

be more effective than the pure media alone. These results are similar to the previous studies in 

other species that have demonstrated the positive impact of stem cells in co-culture with embryo 

culture. The study by Moshkdanian et al. [86] showed that the co-culture of mouse embryos with 

human umbilical cord mesenchymal cells (h-UCMS) improved embryo development after 

exposure to light stress. However, our study was slightly different because we utilized stem cells 

from the same species as the cultured oocytes and embryos.  

The co-culture condition during the maturation phase did not influence the oocytes' nuclear 

maturation rate, but increased the cumulus expansion rate. Furthermore, after fertilization we 

observed that the groups matured in the presence of MSCs showed a higher cleavage, morula, 

and blastocyst rate compared to the oocytes matured in media without MSCs addition. Thus, it is 

possible that the co-culture with MSCs during maturation enhances the cytoplasmic maturation 

in oocytes and thereby contributes to its higher potential for embryo development. Similar to our 
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results, other studies demonstrated a lack of any beneficial effect of the co-culture on the nuclear 

maturation rate of immature ovine oocytes; simply removing oocytes from their follicles allowed 

the resumption of meiosis[87]. Indeed, many immature mammalian oocytes are capable of 

completing meiosis in vitro [88]. Still, only a small percentage of them are competent to continue 

development to the blastocyst stage and beyond, indicating that the IVM process may only 

partially be normal when carried out in vitro.  

The expanded cumulus cells seen in the groups with a co-culture may also have an effect on the 

oocyte maturation process and the results obtained after fertilisation. It has already been shown 

that cumulus cells contributed to the cytoplasmic oocyte maturation and therefore improved 

fertilization rate through gap junction communication[89]. 

Ensuring the perfect culture conditions is crucial to avoid any negative effects on the embryo's 

physiology, divisions or metabolic functions. These repercussions can lead to severe 

complications at later stages, such as impaired fertilisation, embryo development, an increased 

risk of miscarriage, and variety of fetal health issues. Thus, it is highly recommended to maintain 

optimal in vitro embryo development conditions to prevent any harmful consequences[90]. Our 

study thoroughly evaluated the impact of co-culture with MSCs on the development of embryos 

to maintain good conditions for embryo development and to prevent any negative effects. 

Our results revealed a positive impact on embryo development when embryos were co-cultured 

with MSCs in vitro. Specifically, the morula and blastocysts rate were higher in the groups that 

included the MSCs layer during culture compared to those without. It is noteworthy that the 

embryos that were co-cultured with MSCs had previously been matured using traditional media, 

which allowed us to evaluate the MSCs impact solely during the embryo development. These 

findings suggest that co-culture with MSCs may improve embryo developmental capacity. In 

agreement with our results, other research has shown that when horse MSCs were used in co-

culture with bovine embryos the blastocyst formation rate increased [91]; in a similar study, 

bovine amniotic epithelial stem cells used in co-culture led to a better embryo development due 

to the presence of epidermal growth factor, which was suggested to be released by these 

cells[92]. Similarly, a conditioned medium of human MSCs has been used to culture bovine 

embryos, resulting in improved embryo development. Notably, the best results were observed 

when the conditioned medium groups were compared to their respective control groups 
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maintained without fetal bovine serum[93]. These findings above present an important 

implication for the use of stem cells and conditioned medium during embryo culture. 

The positive effect of MSCs on embryo development in both cases during coculture with oocytes 

maturation or with the embryo's development reported in our study may be due to the paracrine 

modulation of the microenvironment and the ability of MSCs to release antioxidant and anti-

inflammatory factors in vitro , which has been reported in several studies. Utilizing a stem cell-

free medium may become the most favourable method for cell therapy in the coming years 

because of all released growth factors and exosomes. Several works have exhibited the 

advantages of solely using stem cell-conditioned medium for treatments, which can eliminate the 

potential danger of unpredictable cell divisions (such as tumors) in patients, along with cell 

membrane-related antigen reactions that could lead to cross-species treatments.[94].  

Additionally, the conditioned media (CM) also increases cell viability and antioxidant enzyme 

activity while reducing reactive oxygen species (ROS) levels and thus apoptosis[95]. It has been 

shown that when CM is added to IVM or/and IVC, multiple growth factors/cytokines present in 

the CM positively regulate the mRNA/protein expression and IVM/IVC microenvironment 

supporting the oocyte development and enhancing the embryo quality in vitro[96–98]. 

Recent studies have also shown that exosomes: microvesicles containing growth factors, 

cytokines, and microRNAs may have a significant impact on cell therapy advancements[99]. 

These results suggest that the micro-modulation potential observed with stem cells could be 

attributed not only to stem cell differentiation properties, but also to the presence of MSCs-

derived exosomes and microvesicles[72]. Thus, it may be hypothesized that the exosomes 

released by the MSCs could positively influence the oocytes and embryos in the culture, 

providing a valid explanation for the observed effects. However, additional research is necessary 

to validate these assumptions. 

Conclusion  

In the presenting study we have successfully isolated mesenchymal stem cells (MSCs) from the 

whole umbilical cord, as well as from the two distinct anatomical regions Wharton's Jelly and 

vessels. All the isolated cells shared the typical characteristics of MSCs, including self-renewal 

ability, fibroblast-like morphology, stem cell markers expression, and differentiation into three 

lineages. However, our findings revealed that Wharton's jelly-derived MSCs exhibited higher 
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expansion, better differentiation ability and the superior pluripotency markers expression. This 

highlights the significant potential of Wharton's Jelly as the optimal source of MSCs from the 

feline umbilical cords. Nonetheless, the whole umbilical cord and vessels also represent viable 

sources of MSCs. 

Our study also explored the effect of feline Wharton’s jelly MSCs during feline oocyte 

maturation and embryo culture in vitro. The addition of feline Wharton's jelly MSCs during 

oocyte maturation and embryo culture resulted in significant improvements in embryo 

developmental capacity. Although, the oocyte nuclear maturation process was not significantly 

impacted, the embryonic development was better when MSCs were used as a feeder layer during 

the maturation or embryo culture. Our results also showed that co-culture with MSCs was the 

most effective during oocyte maturation, leading to the higher cleavage and blastocyst rates 

compared to embryo development in pure media. These findings demonstrated the remarkable 

potential of feline Wharton's jelly MSCs in improving in vitro feline embryo development. 

Unlocking the full potential of MSCs in promoting in vitro oocyte maturation and embryo 

development requires conducting more in-depth studies, including molecular and proteomic 

analyses. Further research on MSCs-derived exosomes and MSCs conditioned medium can offer 

valuable insights into their impact on oocyte maturation and embryo development, paving the 

way for advanced culture options. 
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