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“All models are wrong, but some are useful.”

George E. P. Box
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Abstract

Global warming and the associated rise in temperatures pose a significant threat to
mammals, inducing heat stress and adversely impacting their health and biological
functions. This issue is particularly pertinent in livestock farming, where animals
bred for high production yields and increased metabolic loads are especially
vulnerable to heat stress. In dairy cattle, heat stress leads to reduced milk
production, compromised welfare, and stunted growth. This research addresses the
pressing need to understand the long-term effects of heat stress susceptibility on
organisms, focusing on the genomic, transcriptomic, and microbiota levels of
Holstein cattle under heat stress conditions. Bioinformatics emerges as a pivotal
tool in this research, aiding in the identification of genetic variants, candidate
genes, and pathways associated with heat stress response. The integration of
genomics, transcriptomics, and metagenomics data provides a holistic
understanding of how these factors interplay in the face of heat stress. Three
distinct studies are presented: the first identifies microbial markers indicative of
heat stress in cattle; the second unravels gene expression regulation influenced by
the microbiome; and the third identifies genetic markers associated with heat stress
resilience. These findings collectively inform strategies to enhance animal welfare
and productivity amidst climate-induced heat stress. In the face of climate change’s
global impact, this study emerges as a pivotal foundation, delving into the
biological intricacies that underlie the effects of heat stress on cattle. By dissecting
the interplay of microbiome, transcriptome, and genome, this research unveils the
complex biological mechanisms shaping cattle’s responses to environmental
challenges. Moreover, this dissertation imparts invaluable biological insights that
may refine livestock management and breeding strategies, ultimately strengthening
agricultural sustainability and bolstering global food security.
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Abstract in Polish

Globalne ocieplenie i związany z nim wzrost temperatur stanowią znaczące
zagrożenie dla ssaków, prowadząc do stresu cieplnego i negatywnie wpływając na
ich zdrowie oraz funkcje biologiczne. Problem ten jest szczególnie istotny
w hodowli zwierząt, gdzie zwierzęta hodowane ze względu na wysoką wydajność
produkcyjną i zwiększone obciążenie metaboliczne są szczególnie podatne na stres
cieplny. W przypadku krów mlecznych, stres cieplny prowadzi do zmniejszenia
produkcji mleka, pogorszenia warunków bytowania i zahamowania wzrostu.
Niniejsze badania adresują pilną potrzebę zrozumienia długoterminowych
skutków podatności na stres cieplny u organizmów, skupiając się na analizie
genomu, transkryptomu i mikrobiomu krów rasy Holstein w warunkach stresu
cieplnego. Bioinformatyka wyłania się jako kluczowe narzędzie w tej pracy
badawczej, wspomagając identyfikację zmian genetycznych, genów kandydujących
i szlaków związanych z reakcją na stres cieplny. Integracja danych genomicznych,
transkryptomicznych oraz mikrobiomicznych pozwala na całościowe zrozumienie,
jak stres cieplny wpływa na zmiany molekularne. Przedstawione są trzy odrębne
badania: pierwsze identyfikuje mikrobiologiczne markery wskazujące na stres
cieplny u bydła; drugie wskazuje zmiany na poziomie ekspresji genów oraz
interakcje zachodzące między transkryptomem gospodarza a jego mikrobiomem;
trzecie badanie identyfikuje genetyczne markery związane z odpornością na stres
cieplny. Wyniki te łącznie dostarczają informacji na temat strategii poprawy
dobrostanu zwierząt i produktywności w obliczu stresu cieplnego. Badania
przedstawione w niniejszej pracy mogą stać się fundamentem do dalszych badań,
zgłębiając biologiczne mechanizmy leżące u podstaw wpływu stresu cieplnego na
bydło. Poprzez analizę współdziałania mikrobiomu, transkryptomu i genomu,
badania te ujawniają złożone mechanizmy biologiczne kształtujące odpowiedzi
bydła na wyzwania środowiskowe. Ponadto, niniejsza dysertacja dostarcza
spostrzeżeń biologicznych, które mogą udoskonalić zarządzanie zwierzętami
hodowlanymi i strategie hodowlane, ostatecznie wzmacniając zrównoważony
rozwój rolnictwa i zwiększając globalne bezpieczeństwo żywnościowe.
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Chapter 1

Introduction

Heat is a significant environmental stressor that can affect the physiological,
metabolic, and behavioral responses of animals, including cattle (Gonzalez-Rivas
et al., 2020). Heat stress in cattle occurs when the body’s ability to dissipate heat is
overwhelmed by the environmental heat load, resulting in an imbalance between
heat production and heat dissipation. As a result, cattle are subjected to a range of
negative consequences that can impact their health, welfare, and productivity
(Roth, 2020). Cattle are particularly susceptible to heat stress due to their limited
ability to regulate body temperature. Unlike humans, who can sweat to dissipate
heat, cattle primarily rely on respiratory evaporative cooling to maintain their core
body temperature. As a result, they are vulnerable to heat stress when the ambient
temperature and humidity exceed their thermal comfort zone (Cartwright et al.,
2023). Furthermore, as a result of the multi-generational process of selecting dairy
cattle with a primary focus on enhancing milk production, a breeding objective that
has persisted until very recently, the inherent physiology of these animals can
induce metabolic stress. This stress bears resemblance to the effects of heat stress, as
it emerges from the exceptionally elevated metabolic rates observed in the most
productive cows. This overlap in stress factors highlights a noteworthy parallel
between the challenges posed by intense metabolic activity and the challenges
posed by elevated temperatures. The negative effects of heat stress in cattle have
been well-documented, including decreased feed intake, reduced milk production,
altered immune function, impaired reproductive performance, and even mortality
in severe cases (Krishnan et al., 2017). Heat stress can also impact the quality of
animal products, such as meat and milk, due to changes in the animal’s metabolism
and physiological processes (Dahl, Tao, and Laporta, 2020). Given the potential
impact of heat stress on animal welfare and productivity, it is crucial to understand
the underlying biological mechanisms that contribute to heat stress tolerance in
cattle. One of the primary responses to heat stress in cattle is an increase in
respiration rate and panting, which increases the rate of heat loss through
evaporative cooling. The evaporation of moisture from the respiratory tract and
skin surface helps to dissipate excess heat from the body (Becker, Collier, and
Stone, 2020). In addition to respiratory evaporative cooling, heat stress also triggers
changes in blood flow and metabolism. As body temperature increases, blood
vessels in the skin dilate to facilitate heat loss, which can result in a decrease in
blood flow to other organs, such as the gastrointestinal tract and mammary glands.
This can lead to decreased feed intake, reduced milk production, and altered
nutrient absorption (Rebez et al., 2023). Heat stress can also affect metabolic
processes in the body, including changes in hormone secretion and glucose
metabolism. In response to heat stress, cattle produce more cortisol, which can
affect immune function and induce a state of inflammation in the body. It can also
disrupt glucose homeostasis and lead to insulin resistance, which can impair
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nutrient utilization and increase the risk of metabolic disorders such as ketosis
(Abbas et al., 2020; Mellado et al., 2023). Furthermore, heat stress impacts cattle
reproduction, as high temperatures can reduce sperm and oocyte quality, and
decrease embryo survival rates. Heat stress can also interfere with the normal
estrous cycle and result in delayed or irregular breeding patterns (Miętkiewska,
Kordowitzki, and Pareek, 2022). Overall, the physiological responses to heat stress
in cattle are complex and multifaceted, involving changes in respiration, blood
flow, metabolism, and hormone secretion. Understanding these responses is
essential for developing effective strategies to mitigate the negative effects of heat
stress on cattle health and productivity (Idris et al., 2021).

Heat stress in cattle can also result in changes at the cellular level. The excessive
heat load can induce a range of cellular stress responses, such as the activation of
heat shock proteins (HSPs) and the production of reactive oxygen species (ROS)
(Khan et al., 2023; Hassan et al., 2019). HSPs are a family of proteins that are
involved in cellular stress responses, including those triggered by heat stress. They
help to maintain protein folding and prevent the aggregation of damaged proteins,
which can be harmful to the cell. Heat stress can induce the expression of HSPs in
cattle, which can help protect cells and tissues from heat-induced damage (Archana
et al., 2017). However, the production of ROS can also be induced by heat stress,
which can lead to oxidative stress and damage to cellular components, such as
DNA, lipids, and proteins. This can impair cellular function and contribute to
a range of negative consequences, such as reduced immune function, impaired
reproductive performance, and increased susceptibility to disease (Guo et al., 2021).
Studies have shown that heat stress can alter the expression of genes involved in
immune function, metabolism, and reproductive processes. For example, heat
stress can increase the expression of genes involved in inflammation and decrease
the expression of genes involved in nutrient absorption and metabolism (Garner
et al., 2020; Bai et al., 2020). The molecular changes induced by heat stress in cattle
can have a range of consequences for animal health and productivity.
Understanding the molecular mechanisms underlying these changes is essential for
developing targeted interventions to mitigate the negative effects of heat stress on
cattle. By identifying key molecular targets, researchers can develop strategies to
improve the resilience of cattle to heat stress and enhance their overall health and
productivity.

The microbiome refers to the collection of microorganisms that live in and on an
animal. The microbiome plays a crucial role in animal health and might be altered
in response to heat stress. It can affect animal physiology, influencing a range of
physiological processes, including nutrient absorption, immune function, and
metabolism (Liu et al., 2023). Metagenomic sequencing can be used to identify the
microbial species present in the cattle gut. Bioinformatics tools can be used to
perform taxonomic profiling and functional annotation of the microbiome.
Differential abundance analysis can be performed to identify microbial species that
are enriched or depleted in response to heat stress. Additionally, network analysis
can be used to identify groups of co-occurring microbial species that are associated
with heat stress tolerance. Microbiome analysis can provide insights into how the
intestinal microbiome responds to heat stress and identify potential
microbiome-based interventions to improve heat stress tolerance in cattle (Zhang
et al., 2022). Studies have shown that heat stress can alter the abundance of specific
microbial species in the rumen and feces of cattle, with a reduction in beneficial
bacteria such as cellulolytic bacteria and an increase in opportunistic pathogens.
These changes in the microbiota may have a range of consequences for cattle health
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and productivity. For example, a decrease in beneficial bacteria can impair the
animal’s ability to digest and utilize nutrients from feed, leading to reduced feed
efficiency and production performance. Changes in the microbiota can also impact
immune function, with a reduction in beneficial bacteria potentially increasing the
risk of disease (Park et al., 2022; Kim et al., 2022). Moreover, microbiota can also
play a role in mitigating the negative effects of heat stress on the animal. Certain
microbial species have been shown to produce metabolites such as short-chain fatty
acids (SCFAs) and antioxidants that can help improve nutrient utilization, reduce
inflammation, and protect against oxidative stress (Ruiz-González, Rico, and Rico,
2022). Overall, the relationship between heat stress and microbiota in cattle is
complex and multifaceted. Further research is needed to better understand the
mechanisms underlying these interactions and to develop strategies to mitigate the
negative effects of heat stress on microbiota and animal health.

The transcriptome refers to the set of all RNA transcripts in a cell or tissue. RNA
sequencing (RNA-seq) can be used to quantify gene expression levels in response
to heat stress. Bioinformatics tools can be used to identify differentially expressed
genes (DEGs) between heat-stressed and non-stressed cattle. Functional enrichment
analysis can be performed to identify overrepresented biological pathways and
gene ontology terms among the DEGs. These pathways and terms can provide
insights into the molecular mechanisms underlying heat stress response.
Additionally, co-expression network analysis can be performed to identify groups
of genes that are co-regulated in response to heat stress. Network analysis can
provide information about how genes work together to respond to heat stress and
identify novel pathways and gene candidates for further study (Luo et al., 2022).

The cattle genome was sequenced in 2009 (Burt, 2009), and since then,
researchers have used bioinformatics tools to annotate and compare the genomes of
heat-stressed and non-stressed cattle. One of the primary aims of genome analysis
is to identify genetic variants associated with heat stress tolerance. Genome-wide
association studies (GWAS) can be performed to identify single nucleotide
polymorphisms (SNPs) associated with heat stress response. These SNPs hold the
potential for genomic selection, facilitating the breeding of cattle with improved
heat tolerance, among other breeding objectives. Gene ontology and pathway
enrichment analysis can be performed to gain insights into the biological processes
and molecular pathways involved in heat stress response (Bohlouli et al., 2022).

Multiomics integration, which involves integrating data from multiple omics
platforms, including genomics, transcriptomics, and metagenomics, can provide
a more comprehensive understanding of the biological systems involved in heat
stress response in cattle. Multiomics integration has several advantages over
singleomics in heat stress studies. Firstly, heat stress is a complex biological process
that involves multiple biological systems, including the host genome,
transcriptome, and microbiome. Singleomics approaches, which focus on only one
of these systems, may provide limited insights into the biological processes
involved in heat stress response. Multiomics integration allows for a more
comprehensive understanding of the complex interactions between these systems
and can identify key genes, pathways, and interactions involved in heat stress
response (Subramanian et al., 2020). Secondly, multiomics integration can help
overcome limitations associated with singleomics approaches. For example,
genomics data can identify genetic variations associated with heat stress tolerance,
but it does not provide information on the functional consequences of these
variations. Transcriptomics data can provide information on changes in gene
expression under heat stress conditions, but it does not provide information on the
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genetic basis of these changes. Integrating genomics and transcriptomics data can
help overcome these limitations and provide a more comprehensive understanding
of the functional consequences of genetic variations associated with heat stress
tolerance (Manzoni et al., 2016). Thirdly, multiomics integration can provide
insights into host-microbe interactions involved in heat stress response. The
intestinal microbiome plays a key role in host metabolism, immunity, and overall
health, and is known to be affected by heat stress. Singleomics approaches may not
capture the complex interactions between the host and the microbiome, which can
limit our understanding of the biological processes involved in heat stress response.
Integrating metagenomics and transcriptomics data can help identify key
host-microbe interactions involved in heat stress response and provide insights into
potential targets for interventions (Czech et al., 2022b).

Bioinformatics plays an important role in the analysis of genome,
transcriptome, and microbiome data in heat stress research in cattle. By identifying
genetic variations, candidate genes, and pathways involved in heat stress response,
bioinformatics can provide insights into the molecular mechanisms underlying
heat stress tolerance.

Multiomic data integration may pose challenges, but understanding these
processes can yield results in improving the life and health of animals.

This dissertation will review the current scientific literature on the
physiological, metabolic, and behavioral responses of cattle to heat stress and
discuss the potential strategies for mitigating their negative effect. The dissertation
is structured into three main segments, each shedding light on different facets of
how heat stress influences cattle and their biological makeup. The first part of the
dissertation centers on investigating the influence of heat stress on the microbial
composition of the cattle microbiota. This involves delving into how elevated
temperatures affect the balance and diversity of microorganisms residing within
the cattle, which can subsequently influence their health and overall well-being. In
the second segment, the focus shifts to a detailed analysis of differential gene
expression in cattle experiencing heat stress. This involves examining how the heat
stress condition triggers changes in the expression of genes within the cattle’s
genetic makeup. Furthermore, this research seeks to elucidate the intricate
interplay between these changes in gene expression and the alterations observed in
the microbiota composition. By exploring this interaction, the dissertation aims to
provide a more holistic understanding of the physiological response to heat stress.
The third major component of the research involves a genome-wide associated
analysis of cattle subjected to heat stress. This entails investigating the genetic
variations present within the cattle population and identifying specific genes or
genetic markers that are associated with their response to heat stress. By
pinpointing these genetic factors, researchers can gain insights into the genetic
basis of the cattle’s ability to cope with elevated temperatures.
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Chapter 2

Objective

The primary objective of this dissertation was to investigate the interplay between
microbiome composition, gene expression patterns, genetic diversity, and heat stress
tolerance. The specific research objectives were as follows:

• identification and characterization of the fecal microbiota associated with heat
stress;

• identification of genes differentially expressed under heat stress;

• exploration of the dynamics of interactions between host transcriptome (cattle)
and fecal microbiome under heat stress;

• identification of associations between genetic variation and the level of heat
stress response.

This research aimed to provide insights into the interplay between heat stress
and the microbiome, transcriptome, and genomic variation within the context of
Chinese Holstein cattle as the experimental subject. The findings will contribute to
the development of biomarkers, breeding strategies, and management practices
aimed at improving cattle resilience and productivity under heat stress conditions –
an environmental stressor that has recently been gaining importance. Additionally,
this research will enhance our understanding of the underlying mechanisms
involved in heat stress responses and shed light on potential therapeutic targets for
mitigating heat stress effects. This study’s outcomes are anticipated to yield
dual-fold contributions: firstly, they are poised to deliver substantial benefits to
animal breeders and stakeholders within the cattle industry by furnishing
evidence-based strategies that proactively address the multifaceted challenges
precipitated by heat stress, thereby ameliorating both animal welfare and
productivity. Secondly, the study will serve as an instrumental tool for advancing
our comprehension of the intricate molecular mechanisms governing an organism’s
adaptive response to elevated temperature conditions. These insights are pivotal
for the informed development of strategies aimed at mitigating the deleterious
effects of heat stress and enhancing the overall resilience of cattle populations.
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Chapter 3

Publications constituting
the Doctoral Dissertation

3.1 Fecal microbiota and their association with heat stress in
Bos taurus

This research is a comprehensive exploration of the impact of heat stress on the
composition of the fecal microbiome in Chinese Holstein cattle, which serves as an
apt model organism to investigate the ramifications of heat stress. Recognizing the
multifaceted nature of heat stress, which defies simple quantification through
a single metric, our investigation centers on three distinct indicators of heat stress:
rectal temperature, drooling, and respiratory scores. By leveraging cutting-edge
techniques, including 16S rRNA gene sequencing, bioinformatics, and statistical
analyses, this study endeavors to unravel the intricate associations linking specific
microbial genera and phyla with the diverse facets of heat stress. These findings
constitute a crucial milestone in our understanding of heat stress in cattle, offering
valuable insights into the potential identification of biomarkers indicative of this
condition. This underscores the pivotal role played by the microbiome in
responding to the intricate physiological alterations triggered by heat stress.
Moreover, this research augments our comprehension of microbiome composition
analysis in cattle, introducing the concept of utilizing heat stress as a continuous
variable for investigation. The microbial taxa that exhibit strong associations with
heat stress are prominently featured in this study, holding promise as biomarkers
for subsequent microbiological investigations. As we conclude this study, it
becomes evident that these discoveries not only advance our understanding of heat
stress but also pave the way for further nuanced inquiries into microbiome
dynamics in response to environmental stressors.
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Fecal microbiota and their association
with heat stress in Bos taurus
Bartosz Czech1*, Joanna Szyda1, Kai Wang2, Hanpeng Luo2 and Yachun Wang2

Abstract

Background: Humans have been influencing climate changes by burning fossil fuels, farming livestock, and cutting
down rainforests, which has led to global temperature rise. This problem of global warming affects animals by causing
heat stress, which negatively affects their health, biological functions, and reproduction. On the molecular level, it has
been proved that heat stress changes the expression level of genes and therefore causes changes in proteome and
metabolome. The importance of a microbiome in many studies showed that it is considered as individuals’ “second
genome”. Physiological changes caused by heat stress may impact the microbiome composition.

Results: In this study, we identified fecal microbiota associated with heat stress that was quantified by three metrics
– rectal temperature, drooling, and respiratory scores represented by their Estimated Breeding Values. We analyzed
the microbiota from 136 fecal samples of Chinese Holstein cows through a 16S rRNA gene sequencing approach.
Statistical modeling was performed using a negative binomial regression. The analysis revealed the total number of 24
genera and 12 phyla associated with heat stress metrics. Rhizobium and Pseudobutyrivibrio turned out to be the most
significant genera, while Acidobacteria and Gemmatimonadetes were the most significant phyla. Phylogenetic analysis
revealed that three heat stress indicators quantify different metabolic ways of animals’ reaction to heat stress. Other
studies already identified that those genera had significantly increased abundance in mice exposed to
stressor-induced changes.

Conclusions: This study provides insights into the analysis of microbiome composition in cattle using heat stress
measured as a continuous variable. The bacteria highly associated with heat stress were highlighted and can be used
as biomarkers in further microbiological studies.

Keywords: 16S rRNA gene, Heat stress, Fecal microbiome, Sequencing, V3-V4 regions, Differential abundance

Introduction
Global warming and the resulting long-term increase in
temperatures are the main cause of heat stress in mam-
mals [1]. Moreover, selection towards high production
yield in livestock associated with high metabolic load is an
additional factor that makes livestock especially prone to
overheating. Heat stress negatively affects health, repro-
duction, and other biological functions [2]. Specifically, in
dairy cattle, heat stress impedes milk production, welfare,

*Correspondence: bartosz.czech@upwr.edu.pl
1Biostatistics Group, Department of Genetics, Wroclaw University of
Environmental and Life Sciences, Wroclaw, Poland
Full list of author information is available at the end of the article

and growth [3]. Unfortunately, the phenomenon of heat
stress is common in current ages, and we should under-
stand how its long-term susceptibility affects organisms.
On the genomic level, heat stress is manifested by tran-
scriptional and post-transcriptional regulation of heat
stress-associated genes [4]. It is known that Bos indicus
has greater heat tolerance than Bos taurus [5], which indi-
cates a genetic component of heat resistance. A few genes
responsible for thermotolerance in dairy cattle – HSF1,
MAPK8IP1, and CDKN1B have been recently identified
[6]. However, the effect of heat stress on animal-associated
microbiotas is not well known. In cattle genomics, bac-
teria are the main cause of mastitis – one of the most

© The Author(s). 2022 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were
made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative
Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made
available in this article, unless otherwise stated in a credit line to the data.
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prevalent diseases of dairy cattle [7]. In general, the com-
position of gut microbiota depends on multiple factors –
genetic [8], dietary [9] and environmental [10].
Heat stress belongs to environmental factors that may

change the composition of the microbiota. Studies in cat-
tle reported microbial species which abundance depends
on heat stress conditions. Chen and colleagues [11]
reported the effect of heat stress on physiological char-
acteristics and circulation levels of immune activity and
the microbiome. In an experimental study Zhao and col-
leagues [12] identified bacterial species in the rumen
microbiome associated with heat stress. In their study it
was found that heat stress has no effect on both alpha
and beta diversity, however the effect on the richness of
microbiota was identified, especially significant increase
in the abundance of Streptococcus, Enterobacteriaceae,
Ruminobacter, Treponema and Bacteroidaceae. Sales and
colleagues [13] in his study also reported that heat stress
influenced microbiota in beef cattle rumen. Particularly,
they found genera Flavonifractor,Treponema,Ruminococ-
cus, and Carnobacterium significantly associated with
heat stress. However, assessing the composition of micro-
biota in farm animals’ environments is important to study
its association with heat stress under breeding condi-
tions. Moreover, the categorization between heat stress
and normal conditions is a simplification. The level of
an animal’s heat stress is a continuous variable and thus
can be assessed using quantitative metrics. This however
implies non-standard statistical modeling of the associa-
tion between heat stress traits and microbiome as com-
pared to the experimental-based, case-control setup. In
our study, we focused on the identification of bacteria
associated with heat stress measured by drooling score,
rectal temperature, and respiratory score, expressed by the
estimated breeding values.

Material andmethods
The material comprises 136 fecal samples of 136 Chi-
nese Holstein cows, which were collected in 2017, 2018,
and 2019 directly in herds belonging to Beijing Shounong
Livestock Development Co., Ltd. The cows from the same
year had been fed with exactly the same total mixed
ration diet for over 1 month and the cows from differ-
ent years were fed with different total mixed ration diets
with small change; however, all diets were based on corn
silage and concentrate, and all the cows were fed ad libi-
tum. The experimental design deliberately did not involve
formal case and control groups but was carried out on the
production population.
Fecal samples were collected directly from the cow’s

rectum using a method a bit similar to rectal inspection.
Around 7 AM, before the new feed is provided to the cow,
is the time point we selected to take fecal samples. As
cows are calmer after a good rest during the night, samples

are easier to keep during the morning cooler period in
summer. Moreover, we can be more sure that cows are
in similar digestion stage without stimulation from feed
for a relatively long time, and feces accumulated in the
cow’s rectum. By wearing a disposable plastic long-armed
glove, the sampler inserts his hand and arm into the cow’s
rectum, first removed the outer part of feces accumu-
lated in the rectum, and then grabbed a certain amount of
feces from the inner part by hand, after a few feces mix-
ing actions in the rectum. A disposable plastic long-armed
glove can be used once for each cow. After the sampler’s
hand holding feces moves out of the cow’s rectum, one can
turn the glove outside in. Feces will naturally accumulate
into the finger parts of the glove. By cutting a small hole
at the tip of the finger parts of the glove, a fecal sample
can be easily transferred into a properly labeled sterile 5
ml cryopreservation tube. Since big particles within feces
may precipitate at the bottom of the finger parts of the
glove, the very first part of the fecal sample can be dis-
carded. Fecal samples are normally then placed on dry
ice maximum for 3-4 h before they stored at -80°C at the
laboratory.
The thermal environment during the sampling process

was measured by temperature, humidity, and Tempera-
ture Humidity Index (THI) presented in Table 1.
The procedures of DNA extraction, amplification, and

sequencing were completed by Wekemo Tech Co., Ltd.
(Shenzhen, China). Microbial DNA was extracted from
fecal samples using the E.Z.N.A. soil DNA Kit (Omega
Bio-tek, Norcross, GA, U.S.) according to manufacturer’s
protocols. The final DNA concentration and purification
were determined by NanoDrop 2000 UV-vis spectropho-
tometer (Thermo Scientific, Wilmington, USA), and
DNA quality was checked by 1% agarose gel electrophore-
sis. The V3-V4 hypervariable regions of the bacterial
16S rRNA gene were amplified with primers 338F(5’-
ACTCCTACGGGAGGCAGCAG-3’) and 806R(5’-
GGACTACHVGGGTWTCTAAT-3’) (for samples picked
in 2017) as well as 341F(5’-CCTAYGGGRBGCASCAG-
3’) and 806R(5’-GGACTACNNGGGTATCTAAT-3’) (for
samples picked in 2018 and 2019) by thermocycler PCR
system (GeneAmp 9700, ABI, USA). The PCR reactions
were conducted using the following program: 3 min of
denaturation at 95 °C, 27 cycles of 30 s at 95 °C, 30s for
annealing at 55 °C, and 45s for elongation at 72 °C, and
a final extension at 72 °C for 10 min. PCR reactions were

Table 1 Characteristic of the thermal environment

Sampling date Temperature (Td) Humidity (RH) THI

15 August, 2017 26.58 0.81 77.46

14 August, 2018 27.08 0.82 78.52

27 July, 2019 31.64 0.60 82.01
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performed in triplicate 20 μL mixture containing 4 μL
of 5 μL FastPfu Buffer, 2 μL of 2.5 mM dNTPs, 0.8 μL
of each primer (5 μM), 0.4 μL of FastPfu Polymerase
and 10 ng of template DNA. The resulted PCR products
were extracted from a 2% agarose gel and further purified
using the AxyPrep DNA Gel Extraction Kit (Axygen
Biosciences, Union City, CA, USA) and quantified using
QuantiFluor™-ST (Promega, USA) according to the man-
ufacturer’s protocol. Amplicons were sequenced using the
HiSeq-PE250 (samples picked in 2017) and MiSeq-PE300
(samples picked in 2018 and 2019) Illumina platforms
in paired-end modes. Part of the sequence data analyzed
previously by Zhang and colleagues [14] was used in this
study.
All the heat stress phenotypes were measured as it was

described by Luo and colleagues [15]. In particular, each
lactating cow was recorded twice a day for 2 consecutive
days. In order to correct for the environmental effects that
may affect phenotype values, cows’ response to heat was
expressed by breeding values for rectal temperature (RT),
drooling (DS), and respiratory scores (RS) estimated using
the following model:

yijklqno=μ + fymi + pj + sk + ml + tq + thi + an + pen + εijklqno,

(1)

where yijklqno refers to phenotype (RS, DS or RT), μ is the
population mean, fymi is the fixed effect for farm-year, pj
is the fixed effect of parity, sk is the fixed effect of lacta-
tion stage, ml is the fixed effect of the indication if the
animal is before or after milking, tq is the fixed effect of
testing time (morning or afternoon), thi is the fixed effect
of temperature-humidity index, an is the animal additive
genetic effect, pen is the permanent environmental effect,
and εijklqno is the random residual. The covariance matrix
of random effects has the following structure:

var

⎛
⎝

⎡
⎣

a
pe
ε

⎤
⎦

⎞
⎠ =

⎡
⎣
A

⊗
σ 2
a 0 0

0 I
⊗

σ 2
pe 0

0 0 I
⊗

σ 2
ε

⎤
⎦ . (2)

The total number of 155 cows were used to estimate
the breeding values. The reliability of calculate EBVs was
presented in Table 2.
Furthermore, the breeding values were additionally cor-

rected by deregression [16] in order to remove the ances-
tral information from the EBVs.

Table 2 Descriptive statistics of the reliability of the estimated
breeding values

Phenotype Mean Median Standard deviation

rectal temperature 0.41 0.44 0.10

respiratory score 0.40 0.43 0.10

drooling score 0.33 0.35 0.09

Processing of sequencing data
The first step of the analysis included quality control of
sequenced data. For this purpose, the FastQC [17] soft-
ware was used. Then, poor quality reads and adapter
sequences were removed using Trim Galore [18]. Follow-
ingly, cleaned reads were processed using the QIIME 2
[19] software. First of all, data were dereplicated – reads
that are 100% the same were pooled together. Next, reads
were denoised – reads that occur very rarely were consid-
ered to be PCR errors and removed, as well as chimeric
sequences and singletons. Those steps were done using
DADA2 algorithm [20]. implemented in QIIME 2. All the
sequencing runs were processed separately. Afterward,
the Amplicon Sequence Variants (ASVs) table that rep-
resents counts of occurrence of a given sequence in a
sample was created. Diversity within samples (α-diversity)
was calculated using Simpson’s evenness and Shannon’s
diversity indices using the phyloseq [21] R package. The
association of microbes composition with heat stress fac-
tors was tested using aGLMM-MiRKAT test implemented
in GLMM-MiRKAT R package [22].
The SILVA database (SILVA SSU 138.1) [23] was used

to classify ASVs taxonomically. For the classification, the
naive Bayes algorithm implemented in scikit-learn Python
package was used [24].
Since taxa originally assigned by the SILVA database

represent different levels of taxonomy, they were aggre-
gated to genera and phyla levels. Genera and phyla with
a variance below one and that occurred in less than
three samples were excluded from downstream analyses.
Filtered tables were used for the further differential abun-
dance analysis. Additionally, for organoleptic testing of
batch effect occurrent, the UniformManifold Approxima-
tion and Projection (UMAP; [25]) dimensional reduction
technique was used to find potential sources of unwanted
variability. The phylogenetic tree was generated using the
align-to-tree-mafft-fasttree pipeline [26] implemented in
QIIME2 software.

Differential abundance analysis
The edgeR [27] R package was used for the normaliza-
tion of the processed ASV table as well as for statistical
modeling of the association between the abundance of
microbiota and heat stress indicators. In particular, the
Trimmed Mean of M-values (TMM) based normalization
[28] was applied. It identified and excluded highly abun-
dant and highly variable genera and phyla, whereupon
weighted mean of an abundance of remaining groups
was used for the actual normalization [29]. The associ-
ation between genera/phyla abundance and heat stress
indicators was modeled using the negative binomial dis-
tribution:

K = β0 + β1X1 + β2X2 + e (3)
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Table 3 Amplicon Sequence Variants classification results

Taxonomic level Number of
unique features

Percent of
classified reads

Domain 2 100.00

Phylum 29 97.94

Class 72 97.81

Order 114 97.50

Family 156 70.16

Genus 235 20.93

Species 152 2.35

where K represents the counts of reads for a given
genus/phylum, β0 is the intercept, β1 is the effect of the
DRP (expressed by log fold change), X1 is the design
matrix for DRP, β2 is the effect of the sampling year class,
X2 is the incidence matrix for sampling year, e is the
random error.

K ∼ NB(μk ,φ) (4)

whereμk represents themean of counts reads, and φ is the
dispersion parameter such that Var(K) = μk + φμ2

k cal-
culated using Cox-Reid approximate conditional inference
moderated towards the mean [30].
The significance of the effect of DRP on the relative

abundance of the genus/phylumwas tested using the Like-
lihood Ratio Test [31]. The test statistic is as follows:

LR = −2ln
(
L(m1)

L(m2)

)
∼ χ2(1) (5)

where m1 is the reduced model (i.e. the formula (5) with-
out the effect of DRP), andm2 is the full model (5).
Since each genus/phylum is tested separately, multi-

ple testing correction method was applied using a False
Discovery Rate (FDR) [32].

Results
Processing and classification of sequence variants
46,825 unique sequences of V3 and V4 regions with a total
of 6,486,706 reads were identified and classified. Table 3
summarizes the classification of ASVs based on the dif-
ferent taxonomic levels. In general, reads were classified
into two domains – archaea (0.01%) and bacteria (99,99%).
Almost all reads could be taxonomically assigned up to
order, but species could be assigned only to 2.35% of reads.
Further analysis was carried out using genus-level and
phylum-level resolution.

Microbiota composition
The general composition of microbiota in all samples was
presented on bar plot using genus-level and phylum-level
resolution. Figure 1 presents the relative abundance of
genera with average proportions of more than 0.5%. We
can see that Clostridium is a genus with the highest rel-
ative abundance (15.14%). There were 209 genera with a
relative abundance of less than 0.5%. Figure 2 presents the
analogous visualization for phyla. Firmicutes is a phylum
with the highest relative abundance (63.66%). Regarding
the less abundant phyla, there were identified 22 phyla
with less than 0.5% of the relative abundance.

Clustering
Genera table was then clustered using UMAP algorithm.
The projection of the UMAP coordinates calculated from
the ASVs counts matrix on the genus level demonstrates
three distinct clusters (Fig. 3), which reflect the sampling
year. In further analysis, the effect of the sampling year
was corrected.

Correlation analysis of diversity metrics
In order to check whether the general diversity of micro-
biota within samples is correlated with the DRPs, a

Fig. 1 The relative abundance of genera with average proportions of more than 0.5%
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Fig. 2 The relative abundance of phyla with average proportions of more than 0.5%

correlation analysis was performed. Correlations were
generally positive, but non-significant (Table 4) with the
highest correlation estimated between DRPs for the res-
piratory score and the Simpson’s evenness index (0.27).
Overall, non-significant correlations indicate that there is
no linear dependence between DRPs and sample diversity
calculated based on the abundance of genera.

Relationship of EBVs with microbiomes composition
aGLMM-MiRKAT test was performed to test the asso-
ciation between the microbial community composition
and EBVs. None of the analyzed EBVs showed statistically
significant association with the microbial composition. It
means that individual genera and phyla should be consid-
ered in a statistical model.

Differential abundance analysis
Based on the results of the negative binomial model and
considering FDR ≤ 0.05 22 genera were significantly

associated with rectal temperature with all but one (Helo-
coccus) of them showing decreased abundance with the
increase of rectal temperature. Rhizobium – that repre-
sents soil bacteria – was the most associated genus with
the rectal temperature. The occurrence of this bacteria
might be observed perhaps due to the specific metabolism
or the specific plant diet.
Succinivibrio was the only genus associated with respi-

ratory score and Pseudobutyrivibrio – with the drooling
score. There was no overlap between genera significant
for the three heat stress indicators (Table 5). Differential
abundance analysis of phylum (Table 6) showed that 6
phyla were significiantly associated with rectal tempear-
ture. All of them showed decreased abundance with the
increase of rectal temperature. Fibrobacteres was the only
phylum associated with respiratory score. Surprisingly, for
drooling score, 5 differentially abundant phyla were iden-
tified. Five of them showed increase abundance with the
increase of rectal temperature. Only Fibrobacteres showed

Fig. 3 UMAP projection of the ASVs counts matrix on the genus level
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Table 4 Pearson correlation coefficients between DRPs and
alpha diversity measures expressed by Simpson’s evenness and
Shannon diversity

DRP Simpson’s evenness Shannon diversity

Rectal temperature 0.25 -0.04

Drooling score 0.13 0.23

Respiratory score 0.27 0.11

the descrease abundance. Fibrobacteres was significantly
associated with both drooling and respiratory scores,
while Nitrospiarae, Gemmatimonadetes, Acidobacteria,
and Planctomycetes were significantly associated with
both rectal temperature and drooling score.
In order to check the genetic relationship between those

associated genera, the phylogenetic tree was created based
on the 16S rRNA sequences. The genetic relationship of
the associated genera was shown in Fig. 4. Colors indicate
the association between the genera and the phenotype.
We can see, that Succinivibrio that was associated with the
respiratory score phenotypes created the single clade with
all the genera associated with the rectal temperature. Only
Pseudobutyrivibrio that was associated with the drooling
score creates a single, separate clade.
Table 5 Significant differentially abundant genera

Genus logFC FDR

Rectal temperature

Rhizobium -16.97 3.88 × 1005

Rhodoplanes -16.36 1.64 × 1004

Kaistobacter -15.95 1.10 × 1004

Streptomyces -15.82 1.10 × 1004

Sphingomonas -15.60 1.37 × 1004

Acidovorax -15.54 2.26 × 1004

Nocardia -15.35 1.10 × 1004

Cupriavidus -15.09 1.64 × 1004

Candidatus Solibacter -14.27 1.15 × 1003

Nocardioides -13.82 2.43 × 1004

Brevundimonas -12.95 5.59 × 1004

Kribbella -12.95 2.47 × 1003

Amycolatopsis -12.34 2.03 × 1003

DA101 -12.25 1.75 × 1003

Azospira -11.84 2.03 × 1003

Catellatospora -11.33 8.41 × 1003

Reyranella -11.12 5.69 × 1003

Pseudonocardia -10.89 6.89 × 1003

Devosia -10.64 2.28 × 1003

Rhodococcus -10.23 1.11 × 1002

Helcococcus 8.31 8.22 × 1003

YRC22 -4.58 2.99 × 1002

Respiratory score

Succinivibrio 6.24 3.33 × 1002

Drooling score

Pseudobutyrivibrio -16.64 1.68 × 1003

Table 6 Significant differentially abundant phyla

Phylum logFC FDR

Rectal temperature

Acidobacteria -26.99 1.18 × 1016

Gemmatimonadetes -22.40 5.03 × 1013

Chloroflexi -21.07 2.98 × 1011

Nitrospirae -15.19 1.18 × 1007

Planctomycetes -11.19 5.52 × 1005

Euryarchaeota -6.80 2.99 × 1002

Respiratory score

Fibrobacteres -8.67 2.58 × 1002

Drooling score

Fibrobacteres -16.72 5.22 × 1004

Nitrospirae 15.73 4.22 × 1004

Gemmatimonadetes 15.17 4.69 × 1004

Acidobacteria 14.46 4.71 × 1004

Planctomycetes 12.50 1.13 × 1002

Discussion
This study aimed to identify genera that are associated
with the rectal temperature, drooling score, and respira-
tory score, and in the consequences, associated with heat
stress. The quantitative pseudophenotypes were used in
order to model animals’ microbiomes under conventional
production conditions, without setting up a case (heat
stress conditions) – control (standard conditions) experi-
ment. Such an approach allows for the estimation of gen-
era effect on heat stress under real conditions underlying
dairy herd management.
The general composition of microbiota was not altered

by heat stress. Therefore we focussed on single genera
as potentially involved in heat stress response. Most of
the genera were significantly associated with rectal tem-
perature which might be caused by the fact that samples
and measurement came from the same environment (rec-
tum). Since most of the significantly associated genera
showed decreased abundance with the increase of heat
stress, we can assume, that heat stress favors the inhibition
of growth of some microbial populations.
Based on the current literature, Bailey [33] observed a

reduced abundance of bacteria in genus Pseudobutyriv-
ibrio in mice exposed to stressor-induced changes. Such
reduced abundance was also observed by us the asso-
ciation with a drooling score. Baek [34] in his study
observed that Succinivibrio shows increased abundance
in cows under heat stress. In our study, this genus was
also associated with the respiratory score metric. Inter-
estingly, Helcococcus, the only genus that abundance
increased with increasing rectal temperature, has not
been reported in studies focused on heat stress and any
stress-induced conditions, but it was reported as associ-
ated with postpartum endometritis by Miranda CasoLu-
engo [35]. Moreover, [36] showed that Streptomyces was
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Fig. 4 Phylogenetic tree of genera identified in fecal samples. Color indicates significantly associated genera with a given phenotype

reported as a genus with enriched relative abundance in
Jersey cows in the normal condition compared to the
heat stress condition. It is worthwhile to mention that
many genera reported with the association to the rec-
tal temperatures show the high fold change, suggesting
that increased rectal temperature has a high impact on
microbiota composition. Proteobacteria phylum that rep-
resents most of the associated genera in our study seems
to be themost important phylum in heat stress conditions.
Yu [37] already reported that Proteobacteria and Firmi-
cutes are the most common phyla associated with heat
stress conditions. Interestingly, analysis based on the phy-
lum resolution showed that there were overlapping phyla.
Fibrobacteres turned out to be the significantly associated
phylumwith respiratory and drooling scores. This phylum
was already reported as significant in heat stress analysis
of pigs reported by He [38]. Chloroflexi and Plancto-
mycetes significantly associated with rectal temperature
were also reported as a significant phyla in the analysis of
short-term acute heat stress on the rumen microbiome of
Hanwoo steers [34].
Differences found inmicrobial compositions and in gen-

era/phyla abundance suggest that those changes might
occur due to adapting to climate change. In this study,
the abundance of Fibrobacteres was decreased due to
heat stress. The role of this bacteria is the degradation
of plant-based cellulose in ruminants and acetate pro-
duction. Ransom-Jones and colleagues [39] reported that
glycosyl hydrolases of Fibrobacteres may produce carbo-
hydrate activators, including cellulose enzymes and in
consequence, cowsmay producemore energy with acetate
in the rumen that can be associated with heat production.
Some bacteria (e.g. Pseudobutyrivibrio) were described

as a part of the microbiome, but their impact on host
physiology is not yet known.
Heat stress modeled as a binary variable (i.e. normal

vs. stress conditions) provides valuable insights into the
understanding of the microbiome association to heat
stress, however, it should be beard in mind that the real,
production environment of a dairy cow markedly devi-
ates from the experimental conditions. The most obvious
differences comprise duration, intensity, and variation in
ambient temperatures, which are typically not modeled
in experiments. Therefore, our study, despite being more
challenging from the analytical perspective, provided an
attempt to analyze the microbiome dynamics directly in a
production herd. In such a situation, an important aspect
of the analysis is the heat stress “phenotype”. In order
to pre-correct for a whole series of genetic (i.e. familial
relationship) and environmental effects (such as parity or
lactation stage) possibly affecting the heat stress indicator
measurements, prior to the actual heat stress modeling,
we decided to use breeding values as pseudophenotypes,
which were then deregressed in order to remove ancestral
and familiar contributions. Such an approach provided a
novel approach for the investigation of bacteria in dairy
cattle under heat stress condition.
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3.2 Host transcriptome and microbiome interactions in
Holstein cattle under heat stress condition

The primary objective of this scientific inquiry was to comprehensively investigate
the profound impact of heat stress on the transcriptome. This study was designed
to address two crucial aspects: firstly, the meticulous analysis of gene expression
patterns utilizing RNA-seq data, and secondly, the utilization of previously
acquired findings from the analysis of microbiota, the diverse microbial community
residing within an organism, to expand the scope of the investigation. By
incorporating these additional findings, the study aimed to perform an interaction
analysis, thereby unraveling the intricate interplay between gene expression and
microbiota in response to heat stress. To comprehensively explore this interplay,
several heat stress metrics were considered, including rectal temperature, drooling
score, and respiratory score. Through the meticulous analysis of gene expression
patterns and the utilization of 16S rRNA sequencing, a technique that enables the
identification and quantification of bacterial species based on their ribosomal RNA,
the research successfully identified a set of differentially expressed genes that are
intricately associated with the response to heat stress across three distinct
phenotypes. Moreover, the study revealed a significant and noteworthy
relationship between gene expression and the abundance of microbiota. This
finding sheds light on specific bacterial species that potentially exert influence on
gene regulation during episodes of heat stress. By elucidating the impact of
microbiota on gene expression, this study contributes to our understanding of the
intricate molecular mechanisms underlying the response to heat stress,
highlighting the potential role of specific bacterial species in modulating gene
expression patterns during such physiological challenges.
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Climate change a�ects animal physiology. In particular, rising ambient

temperatures reduce animal vitality due to heat stress and this can be observed

at various levels which included genome, transcriptome, and microbiome. In a

previous study, microbiota highly associated with changes in cattle physiology,

which included rectal temperature, drooling score and respiratory score, were

identified under heat stress conditions. In the present study, genes di�erentially

expressed between individuals were selected representing di�erent additive

genetic e�ects toward the heat stress response in cattle in their production

condition. Moreover, a correlation network analysis was performed to identify

interactions between the transcriptome and microbiome for 71 Chinese

Holstein cows sequenced for mRNA from blood samples and for 16S rRNA

genes from fecal samples. Bioinformatics analysis was performed comprising:

i) clustering and classification of 16S rRNA sequence reads, ii) mapping cows’

transcripts to the reference genome and their expression quantification, and

iii) statistical analysis of both data types—including di�erential gene expression

analysis and gene set enrichment analysis. A weighted co-expression network

analysis was carried out to assess changes in the association between gene

expression and microbiota abundance as well as to find hub genes/microbiota

responsible for the regulation of gene expression under heat stress. Results

showed 1,851 di�erentially expressed genes were found that were shared by

three heat stress phenotypes. These genes were predominantly associated

with the cytokine-cytokine receptor interaction pathway. The interaction

analysis revealed three modules of genes and microbiota associated with

rectal temperature with which two hubs of those modules were bacterial

species, demonstrating the importance of the microbiome in the regulation of

gene expression during heat stress. Genes and microbiota from the significant

modules can be used as biomarkers of heat stress in cattle.

KEYWORDS

heat stress, cattle, 16S rRNA, RNA-seq, WGCNA, NGS, sequencing, multiomics
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1. Introduction

Humans induce global warming that negatively influences

all organisms on the Earth, e.g., by the occurrence of heat

stress (HS) in livestock, which negatively affects its vitality,

physiological responses, and behavior. Heat stress can inhibit

milk production in dairy cattle which can result in significant

losses to the industry (Garner et al., 2020). Moreover, HS in cows

results in further economic losses by reducing reproduction

(Macciotta et al., 2017). Currently, phenotypes such as rectal
temperature, drooling score, and respiration rate score are
standard physiological indicators of HS (Brito et al., 2020; Luo
et al., 2021). Recently, due to genomic selection being targeted

to increased milk production in cattle, cows tend to be more

susceptible to HS (Biffani et al., 2016). The phenomenon of HS

from the molecular perspective is a complex challenge and still,

many mechanisms are unknown. A previous study focusing on

the differential abundance of microbiota already demonstrated

that HS affects the microbial composition of the colon (Czech

et al., 2022). Only a few studies have demonstrated the effect of

HS on the transcriptome profile of cattle, and have identified

genes potentially associated with the HS response. Gao et al.

(2019) pointed out that amino acid and glucose transport were

downregulated by HS. In another study looking at the effect of

HS on the transcriptome profile of mammary glands of cows

(Yue et al., 2020), the authors indicated that HS affects dairy

cows’ immunity and thus has a potential impact on milk yield.

Sigdel et al. also presented the association analysis of HS cattle

using SNPmarkers from the Cooperative Dairy DNARepository

and the Council on Dairy Cattle Breeding, and identified genes

HSF1, MAPK8IP1, and CDKN1B that were directly involved in

the cellular response to HS (Sigdel et al., 2019).

In general, the impact of HS on cows is fairly difficult to

assess due to the complexity of the metabolism and physiology

of cows. However, the development of molecular techniques

like next-generation sequencing, mass spectrometry, and other

techniques allow us to look more deeply into these mechanisms

by obtaining information about the entire biology of the system.

Additionally, high-performance computers with new algorithms

allow for considering more complex statistical models that

allow for better insights into the complexity of organisms

(Park et al., 2021b). Many other studies that focused on

the integration analysis of host transcriptome and microbiota

already demonstrated the importance of the multiomics

approach to identify biomarkers underlying diseases and

complex traits (Wang et al., 2019). In livestock, only a few studies

have been focusing on the integration of host transcriptome and

microbiome interactions. One of the studies showed the impact

of the interaction of host transcriptome and microbiome on the

physiology of full-sibs broilers with divergent feed conversion

ratio (Shah et al., 2019). Ramayo-Caldas et al. (2021) investigated

the joint effects of host genomic variation and the gut

microbiome variation in the context of immune response in pigs.

Also, Carillier-Jacquin et al. (2022) considered the importance

of using both sources of information for the accuracy of

prediction of pig digestibility coefficients, concluding that the

incorporation of gut microbiome information is important for

prediction and even outperforms the importance of host genetic

variation. Another study in chickens showed the influence

of nutrition on the interaction between transcriptome and

microbiome which in turn influenced egg production in aged

laying hens (Liu et al., 2022). Although those studies have

revealed (and stressed) the importance of the incorporation

of microbiome information into the evaluation of phenotypes

that are important for livestock, the particular impact of the

interaction of host transcriptome and microbiome on HS is still

not well understood. Moreover, previous studies (Freitas et al.,

2022) indicated a complex genetic architecture underlying the

HS response, so it is expected that using all available sources of

omic information is crucial for the modeling of this phenotype.

Therefore, it is worth mentioning that almost all HS studies

used the case-control experimental design. In this study, we used

a continuous variable to measure the HS response, to reflect the

production environment which allowed us to study potential

changes in gene expression level, microbiome abundance,

and their interactions under standard conditions. This study

aimed to identify genes differentially expressed between cows

characterized by different additive genetic effects of HS response

measured by the three HS indicators: rectal temperature,

drooling score, and respiratory score, and to perform an

integration of multiomics data of host gene expression levels in

relation to its microbiome composition.

2. Materials and methods

2.1. Material

Fecal and blood samples from 71 Chinese Holstein cows

were collected in 2017, 2018, and 2019. Cows were sampled once

over the course of 3 years. In this study, no artificial heat stress

challenge was imposed since the major goal was to assess the

impact of heat stress that occurs during standard production

conditions and is due to a combination of several climatic and

production factors. Heat stress phenotypes used in this study

were represented by the additive genetic effect of each cow,

corrected for environmental factors such as lactation stage, age

at calving, parity, and temperature-humidity index, that were

expressed as deregressed estimated breeding value (DRP) for

rectal temperature, respiratory score, and drooling score. We

used a mixed linear model for the DRP estimation:

yijklqno = µ+ fymi+pj+ sk+ml+ tq+ thi+an+pen+ǫijklqno,

(1)

where yijklqno refers to phenotype (RS, DS or RT), µ is the

population mean, fymi is the fixed herd-year effect, pj is the

fixed effect of parity, sk is the fixed effect of lactation stage, ml
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is the fixed effect of the indication whether the measurement

was taken before or after milking, tq is the fixed effect of

testing time (morning or afternoon), thi is the fixed effect of the

temperature-humidity index, an is the animal additive genetic

effect, pen is the permanent environmental effect, and ǫijklqno is

the random residual. The covariance matrix of random effects

has the following structure:

var(







a

pe

ǫ






) =







A
⊗

σ 2
a 0 0

0 I
⊗

σ 2
pe 0

0 0 I
⊗

σ 2
ǫ






. (2)

More information about the sampling procedure, the housing

of animals, phenotypes, THI, and the statistical model used to

estimate DRP and a description of the dataset were included in a

previous study (Czech et al., 2022).

2.1.1. Ethics approval and consent to
participate

The data collection process was carried out in strict

accordance with the protocol approved by the Animal

Welfare Committee of the China Agricultural University. All

experimental protocols were approved by the Animal Welfare

Committee of the China Agricultural University. All methods

are reported in accordance with ARRIVE guidelines (https://

arriveguidelines.org) for the reporting of animal experiments.

2.2. Methods

2.2.1. Microbiome

Deoxyribonucleic acid was isolated from fecal samples,

which represent the microbiome composition of the colon, and

was used for sequencing of V3 and V4 regions of the 16S

rRNA gene using the Illumina MiSeq and HiSeq platforms.

Sequenced reads were cleaned and processed using QIIME2

software (Bolyen et al., 2019) with the SILVA database (Quast

et al., 2012) to cluster and classify them to taxonomical levels.

The final output is represented by the amplicon sequence

variants table with information about the frequency of a given

taxon in a given fecal sample. The procedure is explained in

detail by Czech et al. (2022).

2.2.2. mRNA-seq

Total RNA was isolated from leukocytes according to the

instructions of the TRIzol Reagent method (Rio et al., 2010).

The cDNA library was prepared using mRNA molecules and

sequenced using the NovaSeq 6000 System Illumina platform.

Ribonucleic acid concentration and quality were determined

using Equalbit RNA BR Assay Kit (Invitrogen, California,

USA) and the Nanodrop 2000 (Thermo, Massachusetts, USA).

Ribonucleic acid integrity was assessed using 1% agarose gel

electrophoresis and then used for library construction with

28S/18S >1. For the RNA-Seq library, 2 µg total RNA was

firstly used for purification and fragmentation with NEBNext

Poly(A) mRNA Magnetic Isolation Module (Cat No. E7490S,

New England Biolabs (UK) Ltd., Hitchin, Herts, UK) and

then followed by cDNA library with NEBNext Ultra RNA

Library Prep Kit for Illumina (Cat No. E7530S, New England

Biolabs (UK) Ltd., Hitchin, Herts, UK). All libraries were

quantitated by the Equalbit DNA BR Assay Kit (Invitrogen,

California, USA) and pooled to generate equimolarly, and

finally submitted for sequencing by the NovaSeq 6000 System

(Illumina, Inc., San Diego, California, USA) which generated

150 base paired-end reads.

Sequenced reads were evaluated in the context of their

quality and cleaned using Fastp software (Chen et al., 2018).

Filtered reads were mapped to the bovine genome (ARS-

UCD1.2) using STAR software (Dobin et al., 2012) and Picard

(Broad Institute, 2022) was applied to mark duplicates. Finally,

RNA-SeQC (DeLuca et al., 2012) software was used to quantify

the expression. Gene expression was analyzed using the DESeq2

R package (Love et al., 2014) to perform differential gene

expression analysis fitting the negative binomial regression

model adjusted for the sequencing year. The effect of HS was

expressed as the average fold change per DRP increased by

one unit. The Wald test was used to assess the significance of

slope estimates. P-values obtained separately for each gene were

corrected for multiple testing using the Benjamini-Hochberg

method (Benjamini and Hochberg, 1995) for controlling the

False Discovery Rate (FDR). Genes with the FDR < 0.05 were

considered to be associated with HS. Next, we performed Gene-

Set Enrichment Analysis (GSEA) based on Gene Ontology (GO)

(Ashburner et al., 2000; Consortium, 2020) implemented in the

goseq R package (Young et al., 2010) and metabolic pathways

were defined by Kyoto Encyclopedia of Genes and Genomes

(KEGG) (Kanehisa, 2000) implemented in the clusterProfiler R

package (Yu et al., 2012).

2.2.3. Omics integration

The final step of the analysis was the integration of

microbiota abundance identified in the 16S rRNA data with

the gene expression identified in the RNA-seq data. To

study the transcriptome-microbiome interaction we applied

the weighted co-expression network analysis implemented in

the WGCNA R package (Langfelder and Horvath, 2008). The

analysis was split into steps comprising: i. creating a correlation

matrix using Pearson’s correlation coefficient between all

pairs of genes-genera; ii. creating adjacency matrix (matrix-

based representation of a graph) using the formula: amn =

|cmn|
β , where amn is an adjacency between gene/genus m

and gene/genus n, cmn is a Pearson’s correlation coefficient,

and β is a soft-power threshold determined based on the

standard scale-free topology network (Chen and Shi, 2004);
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iii. transformation of the adjacency matrix into the topological

overlap matrix (TOM) which is the matrix of the similarity in

terms of the commonality of the connected nodes (Yip and

Horvath, 2007); iv. the dynamic tree cutting algorithm was used

for the hierarchical clustering of TOM into modules, as clusters

of highly interconnected genes and genera; in order to obtain

co-expressed modules, the parameters of the algorithm were set

to minModuleSize = 20 for the gene/genus dendrogram and

minimum height = 0.25 to cut the tree, in order to merge similar

modules; v. identification of eigengenes for each module that

is expressed by the first principal component of the expression

matrix, vi. Pearson’s correlation analysis of eigengenes with

phenotypes (with t-test for testing the significance of the

correlation coefficient), and finally, vii. identification of hub

genes/genera – genes/genera that have the highest correlations

with other genes/genera contained within each module. Genes

contained within significantly associated modules were then

subjected to GSEA.

3. Results

3.1. Microbiome

The analysis of the 16S rRNA gene allowed us to identify

232 unique genera. The genera, with abundance exceeding 10%

in all the samples, were Clostridium, 57N15, and Treponema.

A detailed analysis of microbiota was described by Czech et al.

(2022).

3.2. mRNA-seq

The analysis of the RNA-seq data identified 2,035

differentially expressed genes for rectal temperature, 1,886

for drooling score, and 1,958 for respiratory score. The

expressions of the majority of those genes were down-regulated

with increasing HS response, i.e., the higher value of phenotypes,

the lower expression. This comprised 85% of down-regulated

genes for rectal temperature, 78% for drooling score, and

80% for respiratory score. The most highly up-regulated

genes were ENSBTAG00000048590 (for rectal temperature),

ENSBTAG00000054209 (for respiratory score), and SLC22A1

(for drooling score), while genes with the highest down-

regulated expression were ENSBTAG00000024272 (for rectal

temperature), ENSBTAG00000050067 (for respiratory score),

and ENSBTAG00000051290 (for drooling score). The 1,851

genes significantly associated with HS were common for all

three phenotypes (Figure 1).

Next, we performed GSEA in which we identified seven

KEGG pathways enriched among significantly differentially

expressed genes that were shared between all three phenotypes:

herpes simplex virus 1 infection (bta05168), viral protein

FIGURE 1

Genes significantly di�erentially expressed with increasing heat

stress for each phenotype. RT denotes rectal temperature, RS

respiratory score, and DS drooling score.

interaction with cytokine and cytokine receptor (bta04061),

chemokine signaling pathway (bta04062), cytokine-cytokine

receptor interaction (bta04060), PI3K-Akt signaling pathway

(bta04151), antifolate resistance (bta01523), and EGFR tyrosine

kinase inhibitor resistance (bta01521). Results of GSEA for

KEGGs were visualized in Figure 2. On the plot, we can see

that Herpes simplex virus 1 infection is characterized with the

lowest P-value of 2.73 · 10−12 and also demonstrated the highest

gene ratio of significantly associated genes that composed this

pathway. Significantly enriched GO terms related to biological

processes were identified only for respiratory score and were

related to cell surface receptor signaling pathway (GO:0007166),

cellular response to endogenous stimulus (GO:0071495), G

protein-coupled receptor signaling pathway (GO:0007186), and

metal ion transport (GO:0030001) (Figure 3).

3.3. Omics integration

By applying steps described in the method section, the

weighted co-expression network was generated. The adjacency

matrix was created by raising the correlation matrix to the

power of 4 (β parameter, Figure 4). In the next step, the TOM

dissimilarity matrix was computed and used for the hierarchical

clustering. Genes and bacteria were clustered into 20 modules,

which ranged in size from 36 to 3015 genes/bacterial genera per

module (Figure 5).

The effect of each gene/bacterial genera was expressed by

the eigengene value, and the correlation of each eigengene with

each HS phenotype was calculated (Figure 6). Three modules

demonstrated significant correlations with rectal temperature

(positive correlation for MEtan, and negative correlations for

MElightycan, and MEroyalblue). Module MEtan consists of 129

genes but no bacterial genera, MElightycan of 26 genes and 26

bacterial genera, and module MEroyalblue of 2 genes and 34

bacterial genera.
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FIGURE 2

Pathway analysis. Dot plot of the statistically significant KEGG pathways shared between all the phenotypes. Gene ratio represents genes related

to KEGG pathway/total number of significantly di�erentially expressed genes and count is the number of genes that belong to a given pathway.

FIGURE 3

Pathway analysis. Dot plot of the statistically significant GO pathways related to biological processes for respiratory score phenotype. Gene ratio

represents genes related to GO terms / total number of significantly di�erentially expressed genes and count is the number of genes that belong

to a given pathway.

Further, we identified hub genes/bacterial genera

representative for each of the three modules: CSF3R

gene in MEtan, Lactococcus bacteria in MElightcyan, and

Rhizobium bacteria in MEroyalblue. There was no overlap

between genes contained within the significant modules

and in the differential gene expression analysis. All genes

from significant modules were annotated to GO terms and

KEGG pathways. MEtan module was enriched in a pathway

related to Pertussis and Salmonella infection (bta05133 and

bta05132, respectively) and in GO terms related to the

cellular response to organic substance (GO:0071310), response

to oxygen-containing compound (GO:1901700), cellular

response to lipid (GO:0071396), and cellular response to

lipopolysaccharide (GO:0071222). The other two modules
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FIGURE 4

Network topology analysis for soft-thresholding powers in WGCNA-scale-free fit index for di�erent powers (A) and mean connectivity analysis

for di�erent soft-thresholding powers (B).

FIGURE 5

Hierarchical cluster tree of co-expressed genes and bacteria.

demonstrated no significant enrichment of KEGG and

GO terms.

3.4. Discussion

This experiment is one of the first investigations in which

the combined data of host transcriptome and microbiota were

used together to study heat stress in cattle. The changes in

cows’ response to HS were identified on the level of gene

expression alteration as well as on the level of the interaction

with microbiota. Heat stress is undoubtedly a complex process

that scientists today must face in order to protect animals.

However, due to its physiological complexity, we are not able to

assess in detail the changes in molecular mechanisms underlying

HS response in livestock. The progressive development of

molecular biology and bioinformatics allows for a broader look

into changes in organisms, allowing simultaneous insight into

the cell at virtually every stage of its life cycle. The RNA-seq

technology has become a very powerful method for identifying

candidate genes associated with complex traits. Already in

Garner et al. (2020) identified BDKRB1 and SNORA19 as

potential candidate genes related to HS. Sigdel et al. (2019)

reported HSF1, MAPK8IP1, and CDKN1B as genes responsible
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FIGURE 6

Module-trait associations. Each row corresponds to a module

eigengene, column to a trait-rectal temperature (RT), respiratory

score (RS), and drooling score (DS). Each cell contains the

corresponding Pearson’s correlation and P-value.

for thermotolerance in dairy cattle. Moreover, Diaz et al. (2021)

identified five genes: E2F8, GATAD2B, BHLHE41, FBXO44,

and RAB39B which were significantly associated with HS.

In this study, it was found that the gene RAB39B was

significantly associated with three phenotypes which included

rectal temperature, drooling, and respiratory scores.

For the microbiome, Sales et al. (2021) identified four

bacterial genera related to HS—Flavonifractor, Treponema,

Ruminococcus, and Carnobacterium. In this study, it was

identified that HS inhibits gene expression of several genes

that might be related to the reduction of energy during

overheating. Because HS appears to be a physiologically complex

phenomenon, the multiomics approach that accounts not only

for alteration in gene expression and changes in the microbiome

composition but also for the interaction between them is

an important approach. Recently also Martínez-Álvaro et al.

(2022) demonstrated that in cattle the host genome affects

not only the composition of the rumen microbiome but also

the level of expression of microbial genes related to methane

emissions. In this study, which is a follow-up analysis, genes

and pathways were identified that are significantly associated

withHS phenotypes. Additionally, interactions involvingmRNA

levels and microbiota in cattle were analyzed. Although the

overlap between these findings and the microbiome and genes

related to HS reported in the literature is constrained to only

RAB39B, therefore it is hypothesized that this approach which

is focused on the interaction between microbiome and host

genetics was able to identify new components of the HS response

that have been missed in the single omics analyzes. A loss of

interaction under increasedHSwas observed. In two out of three

significant modules, bacteria played a key role in the regulation

of gene expression and controlled the abundance of other

bacteria, while CSF3R gene was identified as the only hub gene

in all significantly associated coexpression modules. Currently,

the importance of this gene in the context of HS in cattle has

not been reported yet. However, in human genetics, this gene is

associated with congenital neutropenia (Triot et al., 2014). Park

et al. (2021a) already reported that HS may affect neutrophil

phagocytosis. Therefore, these results may indicate that gene

CSF3R might be strictly associated with both neutrophils and

HS response in cattle. Other significant hubs were represented

by bacteria. Lactococcus bacteria that was identified as the hub

of MElightcyan module was already indicated in the literature

as a genus associated with bovine mastitis (Rodrigues et al.,

2016). This observation stressed the important role of the gut

microbiome in the regulation of gene expression. Our analysis

indicates that for such physiologically complex phenomena

like HS not only the effect of particular omics-based sources

of information is important, but also the consideration of

interactions between them.
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3.3 Genome-wide association study of heat stress response
in Bos taurus

By analyzing DNA variation expressed by single nucleotide polymorphisms
(SNPs) from 68 cows identified by using oligonucleotide microarrays this study
revealed 17 SNPs distributed across three chromosomes that are strongly associated
with heat stress. Notably, these discerned SNPs are intricately linked to the genes
PDZRN4 and PRKG1, which are known to participate in fundamental protein
degradation pathways and the regulation of blood vessel dilation, respectively.
These significant findings underscore the potential importance of PDZRN4 and
PRKG1 in the heat stress tolerance of cattle, thereby providing valuable genetic
markers for prospective research investigations and breeding programs.
Nevertheless, it is worth underscoring that this study signifies the necessity of
doing more in-depth exploration to elucidate the intricate biological pathways that
influence heat stress tolerance. Furthermore, it is noteworthy to mention that the
low statistical power observed in this study is attributed to the relatively modest
sample size utilized, underscoring the necessity for subsequent investigations to
corroborate and extend the scope of our current findings within this pivotal realm
of research. Consequently, further research endeavors are warranted to refine our
understanding of this complex biological phenomenon.
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Abstract

Heat stress is a major challenge in cattle production, affecting animal welfare,
productivity, and economic viability of the industry. In this study, we conducted a
genome-wide association study (GWAS) to identify genetic markers associated with
tolerance to heat stress in Chinese Holstein cattle. We genotyped 68 cows using
Illumina 150K Bovine BeadChip microarray and analysed 112,081 single nucleotide
polymorphisms using a linear model-based GWAS approach. We identified 17 SNPs
distributed on three chromosomes that showed statistically significant associations with
tolerance to heat stress in Chinese Holstein cattle. Five of them were located in introns
of two genes, PDZRN4 and PRKG1. PDZRN4 is involved in protein degradation
pathways, while PRKG1 encodes a protein kinase involved in smooth muscle relaxation
and blood vessel dilation. Our findings highlight the potential importance of PDZRN4
and PRKG1 in heat stress tolerance in cattle and provide valuable genetic markers for
further research and breeding programmes aimed at improving the tolerance to heat
stress in Holstein cattle. However, more studies are needed to elucidate the exact
mechanisms by which these SNPs contribute to tolerance to heat stress and their
potential implications for practical cattle breeding strategies.

Author summary

Heat stress is a critical challenge in cattle production, leading to reduced productivity
and increased mortality rates. In our study, we conducted a genome-wide association
study (GWAS) to identify genetic markers associated with indicators of tolerance to
heat stress in cattle. We found significant associations between indicators of heat stress
tolerance and specific single nucleotide polymorphisms (SNPs) located in two genes,
PDZRN4 and PRKG1. These genes are known to play roles in protein degradation
pathways and smooth muscle relaxation, respectively, and have previously been
implicated in physiological responses to heat stress in other species. Our findings
provide insight into the genetic mechanisms underlying heat stress tolerance in cattle
and could potentially be used in genomic selection programmes aimed at improving heat
stress tolerance in cattle populations. More research is needed to elucidate the
functional importance of these SNPs and their potential applications in cattle breeding
programmes.
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Introduction 1

Heat stress in cattle occurs when the animal’s body temperature rises above 2

physiologically normal levels due to exposure to high temperatures, humidity and solar 3

radiation [1]. This can occur in both dairy and beef cattle and is a significant problem 4

for the livestock industry, particularly in regions with hot and humid climates [2]. 5

Heat stress can affect cattle in several ways. First, it can cause a decrease in feed 6

intake and, later, reduce weight gain or milk production [3]. Second, heat stress can 7

result in respiratory distress, panting, and increased water consumption, which can put 8

additional strain on the animal’s cardiovascular system [4]. Finally, severe heat stress 9

can lead to dehydration, electrolyte imbalances, and dramatic changes in animal 10

physiology [5]. In addition to the direct impact on animal health, heat stress also results 11

in economic losses due to reduced milk production and a lower reproduction rate [6]. 12

An exposition of cows to prolonged periods of heat stress changes in gene expression 13

and epigenetic modifications, which can ultimately affect the animal’s health, 14

productivity and even the genetics of their offspring [7]. 15

Studies have shown that heat stress can lead to changes in the expression of genes 16

related to immune function, metabolism, and reproduction. For example, heat stress 17

can cause a decrease in the expression of genes involved in milk production and an 18

increase in the expression of genes involved in stress responses [8]. 19

In the case of heat stress in cattle, GWAS can be used to identify genetic variants 20

that are associated with body temperature, drooling score, and respiratory score, for 21

example. This will allow breeding strategies to be developed to select animals that are 22

more tolerant to heat stress and maintain productivity under hot and humid 23

conditions [9]. 24

Moreover, from the scientific perspective, GWAS allows understanding of the genetic 25

basis of heat stress, including the biological pathways and mechanisms involved in the 26

response to heat stress. In general, the combination of NGS, genotyping microarrays, 27

and GWAS can provide a powerful approach to the identification of genetic variants and 28

even candidate genes associated with the response to heat stress in cattle. This 29

knowledge can be used to develop new management practises, breeding strategies, and 30

therapeutics to improve animal welfare and productivity in a changing environment. 31

The purpose of this study was to identify genetic variants and metabolic pathways 32

associated with the response to heat stress in cattle that lead to a better understanding 33

of the functional basis of tolerance to heat stress in cattle. 34

Materials and methods 35

The material consists of 68 cows representing Chinese Holstein cattle. These individuals 36

were genotyped using the Illumina 150K Bovine BeadChip (Illumina Inc., San Diego, 37

CA, USA), which consists of 123,268 single nucleotide polymorphisms (SNPs). For all 38

animals, the responses to heat stress were expressed by rectal temperature (RT), 39

drooling score (DS), and respiratory score (RS). These phenotypes were represented by 40

deregressed proofs (DRP) of estimated breeding values (EBVs) predicted as previously 41

described in Czech et al. [10] [11]. 42

The preprocessing of genotype data consisted of retaining: i) individuals with call 43

rate greater than 0.9, ii) SNPs with minor allele frequency (MAF) greater than 0.05, 44

and iii) SNPs that were in the Hardy-Weinberg equilibrium (P -value > 0.05). The 45

filtration process was performed using PLINK software (v1.90b6.21) [12]. Subsequently, 46

GWAS was performed separately for each phenotype, using the following model: 47

y = µ+ βX + ϵ (1)
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where y is a vector of DRPs, X contains SNP genotype coded as 0, 1, or 2, representing 48

the number of reference alleles, β is the SNP additive effect, and ϵ represents residuals. 49

The significance of a SNP effect was tested using the likelihood ratio test with the 50

reduced model represented by model 1 without the SNP effect. The estimation of the 51

model parameter and testing of the significance of the SNP effect were performed using 52

the GEMMA software [13]. To control for multiple testing P -values were adjusted using 53

the Bonferroni correction. Significant SNPs were considered based on the adjusted 54

P -values lower than 0.05. All significant SNPs were annotated using the Variant Effect 55

Predictor (VEP) implemented in the ensemblVEP R package with Ensembl Release 109 56

(Feb 2023) [14]. Additionally, the Animal QTL database was used (QTLdb) to explain 57

the genetic basis of variation in heat stress phenotypes [15]. Next, the Gene-Set 58

Enrichment Analysis (GSEA) was performed to detect potential functional pathways 59

underlying the heat stress response by applying one-sided version of Fisher’s exact test. 60

The Gene Ontology (GO) [16] and the Kyoto Encyclopedia of Genes and Genomes 61

(KEGG) [17] were considered in GSEA implemented in the clusterProfiler R 62

package [18]. 63

Ethics approval and consent to participate 64

The data collection process was carried out strictly according to the protocol approved 65

by the Animal Welfare Committee of the China Agricultural University. All 66

experimental protocols were approved by the Animal Welfare Committee of the China 67

Agricultural University. All methods are reported in accordance with ARRIVE 68

guidelines (https://arriveguidelines.org) for reporting animal experiments. 69

Results 70

Genome-wide association study 71

The filtration process retained 112 081 out of 123 268 SNPs (91%) for GWAS for all 68 72

individuals. As a result of rectal temperature, 17 significant SNPs were identified, while 73

no significant hits were observed for drooling and respiratory scores. Significant SNPs 74

associated with rectal temperature were located on chromosomes 5, 17, and 26. On the 75

Bos taurus autosome (BTA) 5 there were three significant SNPs, on BTA17 there were 76

12 significant SNPs, while on BTA26 there were only two significant SNPs. Manhattan 77

plots were presented in Figure 1 (for rectal temperature), in Figure 2 (for drooling 78

score) and in Figure 3 (for respiratory score). Table 1 shows detailed information on the 79

significantly associated SNPs with rectal temperature. All SNPs were further annotated 80

and processed through GSEA. 81
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Fig 1. Manhattan plot for associations of SNPs with the rectal temperature. X-axis:
SNPs positions on chromosomes, Y-axis: -log10 p-value. The red line indicates the 0.05
significance threshold corrected for multiple testing. Labels show the top significant
SNPs.

Fig 2. Manhattan plot for associations of SNPs with the drooling score. X-axis: SNPs
positions on chromosomes, Y-axis: -log10 p-value. The red line indicates the 0.05
significance threshold corrected for multiple testing. Labels show the top significant
SNPs.

Fig 3. Manhattan plot for associations of SNPs with the respiratory score. X-axis:
SNPs positions on chromosomes, Y-axis: -log10 p-value. The red line indicates the 0.05
significance threshold corrected for multiple testing. Labels show the top significant
SNPs.
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Variants annotation and Gene-Set Enrichment Analysis 82

Results of the annotation process performed using VEP were summarised in Table 1 83

which shows that all significantly associated SNPs with rectal temperature on BTA5 84

and BTA26 were located in introns of PDZRN4 (BTA5) and PRKG1 (BTA25) genes. 85

On BTA17, 11 out of 12 SNPs were located in the intergenic regions, while one SNP was 86

located in the downstream part of the ENSBTAG00000015811 gene. The annotation of 87

the phenotype based on QTLdb demonstrated that SNPs 17:27837317 (rs110432016) 88

and 17:25977762 (rs109962820) were related to a maternal component of calving ease, 89

dairy form, daughter pregnancy rate, foot angle, milk fat percentage, milk fat yield, net 90

merit, length of productive life, milk protein percentage, milk protein yield, rear leg 91

placement, and teat length. GSEA based on the GO indicated that genes related to the 92

associated SNPs were enriched in the following ontologies: GO:0003682:chromatin 93

binding, GO:0004672:protein kinase activity, GO:0004674:protein serine/threonine 94

kinase activity, GO:0004692:cGMP-dependent protein kinase activity, GO:0005524:ATP 95

binding, GO:0006468:protein phosphorylation, GO:0042802:identical protein binding, 96

GO:0005515:protein binding, and GO:0046872:metal ion binding. GSEA for the KEGG 97

pathways showed only enrichment of the cGMP-PKG signaling pathway (bta04022). 98

Discussion 99

Heat stress is an important environmental challenge for livestock production, including 100

cattle, as it can negatively affect animal health, welfare, and productivity. In this study, 101

we performed a GWAS to identify genetic markers associated with heat stress in cattle. 102

Our findings revealed significant associations between heat stress and single nucleotide 103

polymorphisms (SNPs) located in the PDZRN4 and PRKG1 genes, shedding light on 104

the mechanisms underlying the response to heat stress in cattle. This GWAS study 105

serves as a follow-up to previous analyses of differential gene expression and differential 106

abundance of the microbiota in the context of heat stress, providing further insight into 107

the complex interactions between genetics, gene expression, microbiota, and response to 108

heat stress. Previous studies have already demonstrated the importance of rectal 109

temperature as a main indicator of heat stress in cattle. It has been shown that all of 110

the three phenotypes (rectal temperature, drooling score, and respiratory score), rectal 111

temperature showed a major association with gene expression and abundance of 112

microbiota in cattle under heat stress conditions [10] [11]. The heat stress phenotype is 113

difficult to quantify and out of the three measurements that were available in this study, 114

only rectal temperature appeared to be the most representative of heat stress. 115

There are many publications on GWAS related to heat stress in cattle, however, 116

almost all of them focused on the standard case-control experimental design in which 117

one cannot identify potential candidate genes responsible for the heat stress response. It 118

is due to the complex nature of heat stress and the involvement of multiple genes and 119

environmental factors. However, unlike previous studies that have focused on controlled 120

experimental environments, our study examined animals in their production 121

environment, providing valuable information on the genetic factors that influence the 122

tolerance of heat stress in cattle under production conditions. Although this approach 123

allows for capturing the genetic variation present in the population, it also has 124

limitations, including potential confounding factors and the lack of control over 125

environmental variables that may interact with the heat stress phenotype in real 126

production systems. 127

The identification of SNPs in PDZRN4 and PRKG1 associated with heat stress in 128

cattle suggests that these genes may play a role in the physiological response of cattle to 129

heat stress. PDZRN4 gene (PDZ domain containing the ring finger 4) also known as 130
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LNX4 (Ligand of Numb Protein-X 4) plays a potential role as a tumour suppressor gene 131

and may have an antiproliferative effect on hepatocellular carcinoma cell 132

proliferation [19]. Another study showed that PDZRN4 is a functional suppressor of 133

prostate cancer growth [20]. However, there are no studies in which PDZRN4 was 134

indicated as a candidate gene related to the response to heat stress. Studies related to 135

other livestock species showed that this gene could affect fat metabolism in pigs [21]. 136

Furthermore, PDDRN4 was found to be a significant gene associated with poor sperm 137

motility in Holstein-Friesian bulls [22]. However, another gene identified in this study 138

was PRKG1 that encodes a protein called cGMP-dependent protein kinase 1 [23]. 139

PRKG1 was found as the gene associated with tick resistance in South African Nguni 140

cattle [24]. Another study showed the importance of this gene in the local adaptation of 141

indigenous Ugandan cattle to East Coast Fever [25]. However, the most interesting is 142

that the gene PRKG1 has already been found as a gene with a key role in body 143

thermoregulation. In the study that focused on the adaptation to cold of indigenous 144

Siberian populations, PRKG1 has been shown to be the gene involved in cold 145

acclimatisation [26]. Another study showed that this gene was the key to minimising 146

heat loss by regulating blood vessel constriction in Yakutian horses [27]. There is also a 147

study confirming the important role of PRKG1 in temperature regulation in a cold 148

environment in the Amur tiger [28]. Regarding the phenomenon of heat stress, it has 149

been shown that PRKG1 is associated with adaptation to heat stress in Egyptian sheep 150

breeds [29]. 151

Tolerance to heat stress is a complex trait that involves the interplay of multiple 152

genetic and environmental factors [30]. SNPs located in PDZRN4 and PRKG1 provide 153

valuable markers for selecting heat-stress-tolerant animals in breeding programmes. 154

This may lead to the development of genomic selection programmes to improve heat 155

stress resistance in cattle and improve animal welfare and productivity in hot climates. 156

It is important to note that our study has some limitations. First, the sample size 157

may affect the statistical power to detect all SNPs associated with heat stress. However, 158

having low power implies that the significant associations observed in our study may 159

represent genes with an especially high impact on resistance to heat stress. Especially 160

that PRKG1 has already been confirmed as a heat stress-associated gene in other 161

species, including humans. However, functional validation of SNPs located in both genes 162

is warranted to further elucidate the underlying physiological mechanisms. Furthermore, 163

more studies with larger sample sizes are needed to verify our findings and eventually 164

identify additional SNPs and candidate genes with lower effects on heat stress. 165

Conclusion 166

In this study, we identified significant associations between SNPs located in the 167

PDZRN4 and PRKG1 genes and heat stress in cattle, providing important information 168

on the genetic basis of the tolerance to heat stress. Our findings contribute to the 169

understanding of the physiological mechanisms underlying the response to heat stress 170

and provide potential genetic markers for selecting animals tolerant to heat stress in 171

breeding programmes. Due to the limited sample size, further research is needed to 172

validate our findings and identify genes with low to moderate effects. 173
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Chapter 4

Summary

The research presented in this dissertation revealed valuable relationships between
heat stress in cattle and changes at the microbiome level, gene expression, and the
entire genome. This chapter summarizes the research presented in scientific
publications and outlines its limitations and directions for further research.

Microbiome and Heat Stress: Insights and Biomarkers

The first study underscored the profound impact of heat stress on the microbial
composition of cattle digestive systems. The microbiome, often regarded as the
"second genome", was shown to be responsive to physiological changes arising
from heat stress. The identification of fecal microbiota linked to rectal temperature,
drooling, and respiratory scores provided a novel perspective into the microbial
response to heat stress. By applying advanced molecular techniques, we
demonstrated that Rhizobium and Pseudobutyrivibrio emerged as pivotal genera
associated with heat stress, while Acidobacteria and Gemmatimonadetes played key
roles at the phylum level. These findings not only highlighted the microbial
communities’ sensitivity to heat stress but also raised the possibility of utilizing
these microbial markers as heat stress indicators.

Transcriptomic Insights and Regulatory Networks

The second study used RNA sequencing techniques to identify genes whose
expression was altered by heat stress. The interconnections between the
transcriptome and microbiome were unveiled, illustrating the mutual influence
between these molecular layers. The identification of differentially expressed genes
within the context of various heat stress phenotypes offered insights into the
intricate mechanisms underlying cattle responses. The integration of bioinformatics
techniques revealed gene modules, linked to the cytokine-cytokine receptor
interaction pathway, underpinning the vital role of the microbiome in gene
expression regulation during heat stress. This interaction may be used to develop
biomarkers of heat stress in cattle.

Genetic Markers for Heat Stress Tolerance

The third study focused on the genetic factors affecting the tolerance of Chinese
Holstein cattle to heat stress. By conducting a genome-wide association study, we
identified key single nucleotide polymorphisms (SNPs) distributed across
chromosomes, signifying their associations with heat stress resilience. Notably,
SNPs within the PDZRN4 and PRKG1 genes provided genetic markers with
potential implications for breeding programs. The identification of these markers
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provided a foundation for the selection aimed at enhancing heat stress tolerance
within cattle populations.

Limitations and Future Directions

Collectively, these studies provide a holistic understanding of the multifaceted
responses of cattle to heat stress. The integration of genomics, transcriptomics, and
microbiomics unraveled intricate regulatory networks that govern biological
reactions to heat stress. The identified biomarkers and genetic markers present
promising avenues for future research, encompassing the development of strategies
to mitigate heat stress effects on animal welfare and productivity. As the global
climate continues to evolve, the insights garnered from this research are poised to
guide evidence-based decisions in livestock management and breeding practices.
Further studies are warranted to delve deeper into the mechanistic underpinnings
of the identified biomarkers and genetic markers, paving the way for sustainable
solutions that uphold animal welfare and maintain the economic viability of the
cattle industry. Understanding the impact of heat stress on cattle, as these studies
have shown, is the cornerstone of future efforts to address the challenges posed by
changes in the environment.

It should be noted that the study has potential limitations. One of the main
limitations of our research, as in many modern research initiatives, is the limited
size of the sample. Due to practical and financial constraints associated with
collecting and analyzing multi-omics data, the scope of the study population was
limited. This limitation has a number of implications for the generality and
statistical ability of our findings. The small sample size limits the possibility of
extrapolating our results to larger populations or different environments. It is
important to recognize that variability in our limited sample may not capture the
entire spectrum of biological diversity, which may lead to biased results. This
limitation emphasizes the importance of careful interpretation and calls for studies
with larger and more diverse cohorts to validate our conclusions. Furthermore, the
small sample size affects the statistical power of our analyses. With fewer data
points, it becomes challenging to detect subtle or modest effects, increasing the risk
of both type I and type II errors. Researchers should be aware that some
associations or trends may remain undetected due to the limited sample, and this
should be considered when interpreting the significance of the results.
Furthermore, the small sample size affects the statistical power of our analyses.
With fewer data points, it becomes challenging to detect subtle or modest effects,
increasing the risk of both type I and type II errors. Researchers should be aware
that some associations or trends may remain undetected due to the limited sample,
and this should be considered when interpreting the significance of our results.
Another limitation in our study relates to the issue of missing data across different
molecular layers. The availability of complete multiomics data for all individuals is
a considerable challenge in many multiomics investigations. In our study, not all
animals had data for all omics, which impedes a comprehensive multiomics
analysis involving all molecular layers simultaneously. However, the problem of
small sample sizes and missing data is a common challenge in multiomics research,
and researchers need to be careful when interpreting and generalizing the results.
Future research should seek to overcome these limitations to advance our
understanding of complex biological systems.

In conclusion, this research underscores the power of bioinformatics in
unraveling the complexities of cattle responses to heat stress. The integration of
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diverse omics data has facilitated a comprehensive view of how molecular, genetic,
and ecological factors intertwine in the face of adversity. As our world grapples
with climate change, this dissertation’s findings have far-reaching implications for
enhancing livestock management practices, breeding strategies, and sustainable
agricultural practices. The connection between bioinformatics and life sciences
holds the promise of deeper insights into the mechanisms governing adaptation,
contributing to the welfare of livestock and the security of global food systems.
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sperm head morphometry in relation to male pedigree and fertility. In
Theriogenology (Libk. 208, or. 119–125). Elsevier BV.
https://doi.org/10.1016/j.theriogenology.2023.06.006

• Kwasnik, M., Socha, W., Czech, B., Wasiak, M., Rola, J., & Rozek, W. (2023).
Protein-Coding Region Derived Small RNA in Exosomes from Influenza A
Virus–Infected Cells. In International Journal of Molecular Sciences (Libk. 24,
Issue 1, or. 867). MDPI AG. https://doi.org/10.3390/ijms24010867

• Czech, B., Wang, Y., Wang, K., Luo, H., Hu, L., & Szyda, J. (2022). Host
transcriptome and microbiome interactions in Holstein cattle under heat
stress condition. In Frontiers in Microbiology (Libk. 13). Frontiers Media SA.
https://doi.org/10.3389/fmicb.2022.998093

• Czech, B., Szyda, J., Wang, K., Luo, H., & Wang, Y. (2022). Fecal microbiota
and their association with heat stress in Bos taurus. In BMC Microbiology
(Libk. 22, Issue 1). Springer Science and Business Media LLC.
https://doi.org/10.1186/s12866-022-02576-0

• Suchocki, T., Czech, B., Dunislawska, A., Slawinska, A., Derebecka, N.,
Wesoly, J., Siwek, M., & Szyda, J. (2021). SNP prioritization in targeted
sequencing data associated with humoral immune responses in chicken. In
Poultry Science (Libk. 100, Issue 11, or. 101433). Elsevier BV.
https://doi.org/10.1016/j.psj.2021.101433
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